Exotics at SC10

By Michael Feldman

November 24, 2010

Before general-purpose GPUs broke onto the supercomputing scene a few years ago, HPC was nearly a monoculture, processor-wise. According to the latest IDC numbers, x86 CPUs own about three-quarters of the market by revenue share. But the annual Supercomputing Conference always manages to showcase a number of exotic machines based on more esoteric parts, and this year’s event in New Orleans was no exception.

IBM’s Blue Gene/Q

First up is IBM’s Blue Gene/Q, the company’s next-generation architecture in the Blue Gene lineage. If you happened by the IBM booth at the conference, you could get a look at the compute and the I/O boards that will go into the upcoming BG machinery. The compute box has 32 nodes inside, with each node containing 16 PowerPC cores and each core able to manage four threads simultaneously. With 16 GB per node, IBM has managed to maintain a core:GB ratio of 1:1.

All of this adds up to a lot of flopping horsepower. According to IBM Deep Computing VP Dave Turek, just four BG/Q racks will deliver a petaflop (sustained) of performance. And true to the Blue Gene lineage, it does so with minimal power. A prototype BG/Q system topped the latest Green500 list announced at SC10 last week, with a figure of 1,684.2 megaflops per watt. That beat out even the power-sipping TSUBAME 2.0 super at Tokyo Tech, which derives most of its computational muscle from energy-efficient NVIDIA Fermi GPUs.

The first Q — at least the first big one — will be installed in 2011 at Lawrence Livermore National Laboratory. That system, known as Sequoia, is intended to be THE big production machine for the NNSA’s weapon simulation codes maintained under the Advanced Simulation and Computing (ASC) Program. Sequoia is slated to be a 20-petaflop system when it boots up next year.

Fujitsu’s K Supercomputer

Also on display at SC10 was Fujitsu’s Sparc64 VIIIfx CPU. The processor will be the basis for Kei Soku Keisanki, aka the “K computer.” That machine will be the culmination of Japan’s Next-Generation Supercomputing Project and is expected to deliver 10 petaflops for its main customer, RIKEN (Japan’s Institute of Physical and Chemical Research). Originally scheduled to come online in 2010, the pullout of NEC and Hitachi last year pushed the timeline out significantly. Full deployment is now scheduled to complete in 2012.

The Sparc64 VIIIfx processor itself is an 8-core scalar CPU that can deliver 128 peak gigaflops. Energy efficiency appears to be quite respectable. A cut-down K computer system at RIKEN was ranked number four on the latest Green500 list at 828.67 megaflops per watt (or about half that of the BG/Q prototype). Keep in mind, the original K machine was supposed to contain vector hardware as well, but when NEC and Hitachi bailed, the scalar CPUs from Fujitsu were forced to carry the entire computational load. The current design puts 80,000 Sparc64 VIIIfx chips into the 10-petaflop machine.

Tilera’s Manycore Processors

For a company that immodestly claims on its website that it “has solved the multi-processor scalability problem,” one would expect the supercomputing crowd to take notice. And it has. Tilera, makers of manycore microprocessors, has managed to attract both SGI and DARPA for HPC duty.

The 64-core Tilera processor will be an option on SGI’s Prism XL supercomputer (the offspring of Project Mojo), the company’s new accelerator-centric platform unveiled at SC10. Although most Prisms will likely be outfitted with GPGPU, SGI determined that the power-sipping Tilera silicon would be a great fit for HPC-style workloads that mainly need integer acceleration — apps like encryption, image and signal processing; network packet inspection, Web/content delivery, and media format conversion. Whether this particular configuration catches on or not remains to be seen, but you have to give SGI credit for going after market niches that other HPC vendors have largely ignored.

Tilera is also a player in DARPA’s Ubiquitous High Performance Computing (UHPC) program, where its manycore tiled processor technology garnered the company a place on one of the four initial teams. Anant Agarwal, Tilera co-founder and CTO (and EE/CS professor at MIT) pitched his UHPC team’s Project Angstrom at a Friday panel at SC10. In his presentation, Agarwal emphasized the performance per watt strength of the Tilera technology versus conventional CPUs. For example, to attain a targeted 50 mW (milliwatts) per core performance needed for UHPC machines, Tilera has only to modestly scale its current 200 mW per core designs. Agarwal proposes they can deliver that on 11nm technology with a 1,000-core 50 watt chip that delivers 5 teraflops. Conventional CPUs, he argues, are going to have to undergo a deeper architectural redesign, given that they currently consume around 10 watts per core.

Cray’s XMT

Cray’s XMT supercomputer has been around since 2007, but has always been overshadowed by the company’s mainstream XT and now XE lines. Outside the three-letter intelligence agencies and a few US DOE labs, the machine is not widely known. But Cray is apparently looking to expand its popularity. At SC10 this year, the XMT got some extra attention, appearing in the Disruptive Technologies exhibit and as the focus of its own BoF.

The XMT’s forte is scalable data analytics, and the architecture has been designed with this application set in mind. Encompassing Cray’s custom SeaStar2 interconnect and Threadstorm processors, the platform’s principle architectural feature is globally-addressable memory, which makes it possible to run shared memory applications on the machine. All Threadstorm chips can access each other’s memory (up to 8 GB per processor) making it feasible to build a system with as much as 64 terabytes of global RAM.

Unlike most shared memory machines, the XMT is built to support a lot of parallelism. Each Threadstorm CPU can manage 128 threads at a time. Combined with speedy access to random chunks of remote shared memory, the system is a much more efficient platform than a conventional distributed memory architecture for those applications that require processing of really big graph-oriented databases. This includes a lot of large-scale scientific data analysis as well as many non-technical informatics applications where the data is unstructured. Look for Cray to keep pushing this technology into this rapidly emerging space.

SeaMicro’s Atom-Based Server

Perhaps the most obscure exotic at SC10 was SeaMicro’s SM10000, an Intel Atom-based server that puts eight of the tiny processors onto a card, 512 in a 10U enclosure, and 2,048 in a rack. The Z530 processor being used is a single core, 1.6 GHz chip that has a max TDP of a mere 2 watts. The company’s pitch is that this setup requires just one-quarter of the power and space of conventional x86 servers without requiring any modifications to software. Atom is conveniently x86 compatible.

The downside is that it’s a pretty low-end set-up. Memory maxes out at 2 GB per card; network support is Ethernet only; and the single-core chip in the current version is 32-bit. That may be acceptable for low-precision throughput apps that need lots of parallelism but don’t require any sort of tight coupling or single-threaded performance. A 64-bit version with InfiniBand or low-latency 10GbE connectivity would be a much more interesting offering. But keep on eye on the Atom. It could be the dark horse in the race for energy-efficient x86 HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This