Exotics at SC10

By Michael Feldman

November 24, 2010

Before general-purpose GPUs broke onto the supercomputing scene a few years ago, HPC was nearly a monoculture, processor-wise. According to the latest IDC numbers, x86 CPUs own about three-quarters of the market by revenue share. But the annual Supercomputing Conference always manages to showcase a number of exotic machines based on more esoteric parts, and this year’s event in New Orleans was no exception.

IBM’s Blue Gene/Q

First up is IBM’s Blue Gene/Q, the company’s next-generation architecture in the Blue Gene lineage. If you happened by the IBM booth at the conference, you could get a look at the compute and the I/O boards that will go into the upcoming BG machinery. The compute box has 32 nodes inside, with each node containing 16 PowerPC cores and each core able to manage four threads simultaneously. With 16 GB per node, IBM has managed to maintain a core:GB ratio of 1:1.

All of this adds up to a lot of flopping horsepower. According to IBM Deep Computing VP Dave Turek, just four BG/Q racks will deliver a petaflop (sustained) of performance. And true to the Blue Gene lineage, it does so with minimal power. A prototype BG/Q system topped the latest Green500 list announced at SC10 last week, with a figure of 1,684.2 megaflops per watt. That beat out even the power-sipping TSUBAME 2.0 super at Tokyo Tech, which derives most of its computational muscle from energy-efficient NVIDIA Fermi GPUs.

The first Q — at least the first big one — will be installed in 2011 at Lawrence Livermore National Laboratory. That system, known as Sequoia, is intended to be THE big production machine for the NNSA’s weapon simulation codes maintained under the Advanced Simulation and Computing (ASC) Program. Sequoia is slated to be a 20-petaflop system when it boots up next year.

Fujitsu’s K Supercomputer

Also on display at SC10 was Fujitsu’s Sparc64 VIIIfx CPU. The processor will be the basis for Kei Soku Keisanki, aka the “K computer.” That machine will be the culmination of Japan’s Next-Generation Supercomputing Project and is expected to deliver 10 petaflops for its main customer, RIKEN (Japan’s Institute of Physical and Chemical Research). Originally scheduled to come online in 2010, the pullout of NEC and Hitachi last year pushed the timeline out significantly. Full deployment is now scheduled to complete in 2012.

The Sparc64 VIIIfx processor itself is an 8-core scalar CPU that can deliver 128 peak gigaflops. Energy efficiency appears to be quite respectable. A cut-down K computer system at RIKEN was ranked number four on the latest Green500 list at 828.67 megaflops per watt (or about half that of the BG/Q prototype). Keep in mind, the original K machine was supposed to contain vector hardware as well, but when NEC and Hitachi bailed, the scalar CPUs from Fujitsu were forced to carry the entire computational load. The current design puts 80,000 Sparc64 VIIIfx chips into the 10-petaflop machine.

Tilera’s Manycore Processors

For a company that immodestly claims on its website that it “has solved the multi-processor scalability problem,” one would expect the supercomputing crowd to take notice. And it has. Tilera, makers of manycore microprocessors, has managed to attract both SGI and DARPA for HPC duty.

The 64-core Tilera processor will be an option on SGI’s Prism XL supercomputer (the offspring of Project Mojo), the company’s new accelerator-centric platform unveiled at SC10. Although most Prisms will likely be outfitted with GPGPU, SGI determined that the power-sipping Tilera silicon would be a great fit for HPC-style workloads that mainly need integer acceleration — apps like encryption, image and signal processing; network packet inspection, Web/content delivery, and media format conversion. Whether this particular configuration catches on or not remains to be seen, but you have to give SGI credit for going after market niches that other HPC vendors have largely ignored.

Tilera is also a player in DARPA’s Ubiquitous High Performance Computing (UHPC) program, where its manycore tiled processor technology garnered the company a place on one of the four initial teams. Anant Agarwal, Tilera co-founder and CTO (and EE/CS professor at MIT) pitched his UHPC team’s Project Angstrom at a Friday panel at SC10. In his presentation, Agarwal emphasized the performance per watt strength of the Tilera technology versus conventional CPUs. For example, to attain a targeted 50 mW (milliwatts) per core performance needed for UHPC machines, Tilera has only to modestly scale its current 200 mW per core designs. Agarwal proposes they can deliver that on 11nm technology with a 1,000-core 50 watt chip that delivers 5 teraflops. Conventional CPUs, he argues, are going to have to undergo a deeper architectural redesign, given that they currently consume around 10 watts per core.

Cray’s XMT

Cray’s XMT supercomputer has been around since 2007, but has always been overshadowed by the company’s mainstream XT and now XE lines. Outside the three-letter intelligence agencies and a few US DOE labs, the machine is not widely known. But Cray is apparently looking to expand its popularity. At SC10 this year, the XMT got some extra attention, appearing in the Disruptive Technologies exhibit and as the focus of its own BoF.

The XMT’s forte is scalable data analytics, and the architecture has been designed with this application set in mind. Encompassing Cray’s custom SeaStar2 interconnect and Threadstorm processors, the platform’s principle architectural feature is globally-addressable memory, which makes it possible to run shared memory applications on the machine. All Threadstorm chips can access each other’s memory (up to 8 GB per processor) making it feasible to build a system with as much as 64 terabytes of global RAM.

Unlike most shared memory machines, the XMT is built to support a lot of parallelism. Each Threadstorm CPU can manage 128 threads at a time. Combined with speedy access to random chunks of remote shared memory, the system is a much more efficient platform than a conventional distributed memory architecture for those applications that require processing of really big graph-oriented databases. This includes a lot of large-scale scientific data analysis as well as many non-technical informatics applications where the data is unstructured. Look for Cray to keep pushing this technology into this rapidly emerging space.

SeaMicro’s Atom-Based Server

Perhaps the most obscure exotic at SC10 was SeaMicro’s SM10000, an Intel Atom-based server that puts eight of the tiny processors onto a card, 512 in a 10U enclosure, and 2,048 in a rack. The Z530 processor being used is a single core, 1.6 GHz chip that has a max TDP of a mere 2 watts. The company’s pitch is that this setup requires just one-quarter of the power and space of conventional x86 servers without requiring any modifications to software. Atom is conveniently x86 compatible.

The downside is that it’s a pretty low-end set-up. Memory maxes out at 2 GB per card; network support is Ethernet only; and the single-core chip in the current version is 32-bit. That may be acceptable for low-precision throughput apps that need lots of parallelism but don’t require any sort of tight coupling or single-threaded performance. A 64-bit version with InfiniBand or low-latency 10GbE connectivity would be a much more interesting offering. But keep on eye on the Atom. It could be the dark horse in the race for energy-efficient x86 HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire