Exotics at SC10

By Michael Feldman

November 24, 2010

Before general-purpose GPUs broke onto the supercomputing scene a few years ago, HPC was nearly a monoculture, processor-wise. According to the latest IDC numbers, x86 CPUs own about three-quarters of the market by revenue share. But the annual Supercomputing Conference always manages to showcase a number of exotic machines based on more esoteric parts, and this year’s event in New Orleans was no exception.

IBM’s Blue Gene/Q

First up is IBM’s Blue Gene/Q, the company’s next-generation architecture in the Blue Gene lineage. If you happened by the IBM booth at the conference, you could get a look at the compute and the I/O boards that will go into the upcoming BG machinery. The compute box has 32 nodes inside, with each node containing 16 PowerPC cores and each core able to manage four threads simultaneously. With 16 GB per node, IBM has managed to maintain a core:GB ratio of 1:1.

All of this adds up to a lot of flopping horsepower. According to IBM Deep Computing VP Dave Turek, just four BG/Q racks will deliver a petaflop (sustained) of performance. And true to the Blue Gene lineage, it does so with minimal power. A prototype BG/Q system topped the latest Green500 list announced at SC10 last week, with a figure of 1,684.2 megaflops per watt. That beat out even the power-sipping TSUBAME 2.0 super at Tokyo Tech, which derives most of its computational muscle from energy-efficient NVIDIA Fermi GPUs.

The first Q — at least the first big one — will be installed in 2011 at Lawrence Livermore National Laboratory. That system, known as Sequoia, is intended to be THE big production machine for the NNSA’s weapon simulation codes maintained under the Advanced Simulation and Computing (ASC) Program. Sequoia is slated to be a 20-petaflop system when it boots up next year.

Fujitsu’s K Supercomputer

Also on display at SC10 was Fujitsu’s Sparc64 VIIIfx CPU. The processor will be the basis for Kei Soku Keisanki, aka the “K computer.” That machine will be the culmination of Japan’s Next-Generation Supercomputing Project and is expected to deliver 10 petaflops for its main customer, RIKEN (Japan’s Institute of Physical and Chemical Research). Originally scheduled to come online in 2010, the pullout of NEC and Hitachi last year pushed the timeline out significantly. Full deployment is now scheduled to complete in 2012.

The Sparc64 VIIIfx processor itself is an 8-core scalar CPU that can deliver 128 peak gigaflops. Energy efficiency appears to be quite respectable. A cut-down K computer system at RIKEN was ranked number four on the latest Green500 list at 828.67 megaflops per watt (or about half that of the BG/Q prototype). Keep in mind, the original K machine was supposed to contain vector hardware as well, but when NEC and Hitachi bailed, the scalar CPUs from Fujitsu were forced to carry the entire computational load. The current design puts 80,000 Sparc64 VIIIfx chips into the 10-petaflop machine.

Tilera’s Manycore Processors

For a company that immodestly claims on its website that it “has solved the multi-processor scalability problem,” one would expect the supercomputing crowd to take notice. And it has. Tilera, makers of manycore microprocessors, has managed to attract both SGI and DARPA for HPC duty.

The 64-core Tilera processor will be an option on SGI’s Prism XL supercomputer (the offspring of Project Mojo), the company’s new accelerator-centric platform unveiled at SC10. Although most Prisms will likely be outfitted with GPGPU, SGI determined that the power-sipping Tilera silicon would be a great fit for HPC-style workloads that mainly need integer acceleration — apps like encryption, image and signal processing; network packet inspection, Web/content delivery, and media format conversion. Whether this particular configuration catches on or not remains to be seen, but you have to give SGI credit for going after market niches that other HPC vendors have largely ignored.

Tilera is also a player in DARPA’s Ubiquitous High Performance Computing (UHPC) program, where its manycore tiled processor technology garnered the company a place on one of the four initial teams. Anant Agarwal, Tilera co-founder and CTO (and EE/CS professor at MIT) pitched his UHPC team’s Project Angstrom at a Friday panel at SC10. In his presentation, Agarwal emphasized the performance per watt strength of the Tilera technology versus conventional CPUs. For example, to attain a targeted 50 mW (milliwatts) per core performance needed for UHPC machines, Tilera has only to modestly scale its current 200 mW per core designs. Agarwal proposes they can deliver that on 11nm technology with a 1,000-core 50 watt chip that delivers 5 teraflops. Conventional CPUs, he argues, are going to have to undergo a deeper architectural redesign, given that they currently consume around 10 watts per core.

Cray’s XMT

Cray’s XMT supercomputer has been around since 2007, but has always been overshadowed by the company’s mainstream XT and now XE lines. Outside the three-letter intelligence agencies and a few US DOE labs, the machine is not widely known. But Cray is apparently looking to expand its popularity. At SC10 this year, the XMT got some extra attention, appearing in the Disruptive Technologies exhibit and as the focus of its own BoF.

The XMT’s forte is scalable data analytics, and the architecture has been designed with this application set in mind. Encompassing Cray’s custom SeaStar2 interconnect and Threadstorm processors, the platform’s principle architectural feature is globally-addressable memory, which makes it possible to run shared memory applications on the machine. All Threadstorm chips can access each other’s memory (up to 8 GB per processor) making it feasible to build a system with as much as 64 terabytes of global RAM.

Unlike most shared memory machines, the XMT is built to support a lot of parallelism. Each Threadstorm CPU can manage 128 threads at a time. Combined with speedy access to random chunks of remote shared memory, the system is a much more efficient platform than a conventional distributed memory architecture for those applications that require processing of really big graph-oriented databases. This includes a lot of large-scale scientific data analysis as well as many non-technical informatics applications where the data is unstructured. Look for Cray to keep pushing this technology into this rapidly emerging space.

SeaMicro’s Atom-Based Server

Perhaps the most obscure exotic at SC10 was SeaMicro’s SM10000, an Intel Atom-based server that puts eight of the tiny processors onto a card, 512 in a 10U enclosure, and 2,048 in a rack. The Z530 processor being used is a single core, 1.6 GHz chip that has a max TDP of a mere 2 watts. The company’s pitch is that this setup requires just one-quarter of the power and space of conventional x86 servers without requiring any modifications to software. Atom is conveniently x86 compatible.

The downside is that it’s a pretty low-end set-up. Memory maxes out at 2 GB per card; network support is Ethernet only; and the single-core chip in the current version is 32-bit. That may be acceptable for low-precision throughput apps that need lots of parallelism but don’t require any sort of tight coupling or single-threaded performance. A 64-bit version with InfiniBand or low-latency 10GbE connectivity would be a much more interesting offering. But keep on eye on the Atom. It could be the dark horse in the race for energy-efficient x86 HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This