Intel Charts Its Multicore and Manycore Future for HPC

By Michael Feldman

December 1, 2010

A lot of discussion at this year’s Supercomputing Conference was devoted to manycore architectures and exascale computing — two topics which seem to go hand-in-hand. But as the community hurtles toward the exaflop milestone, it has become clear that the natural evolution of multicore x86 CPUs won’t get the industry very far toward that goal. Manycore GPGPUs, on the other hand, do appear to be a viable path to exascale computing. So where does that leave GPU-less Intel?

In a nutshell, Intel’s answer to GPGPUs is its new Many Integrated Core (MIC) architecture. MIC, which was unveiled at the International Supercomputing Conference (ISC’10) this summer in Germany, is the recycled Larrabee technology that Intel originally developed for the high end graphics and visualization markets. When it became clear that effort wouldn’t yield a competitive alternative to the established GPUs from NVIDIA and AMD, Intel scrapped the project and recast the technology as an HPC accelerator.

To dig a little deeper into Intel’s HPC strategy, HPCwire spoke with Rajeeb Hazra, the general manager for the High Performance Computing group at Intel. A 15-year veteran of Intel, Hazra took over the HPC GM position from Richard Dracott in July of this year. Prior to that, Hazra was the director of the Supercomputing Architecture and Planning (SAP) group, which focuses on designing architectures for the highest end platforms, that is, petaflop and exaflop computing.

His experience in the supercomputing group was fortuitous, given that Intel’s biggest challenge in the server market is likely to be delivering products for the elite end of high performance computing. Today Intel is the dominant processor supplier for all HPC platforms, from top 10 supercomputers, to clusters, and down to high performance clients. The plan is to continue to do so. “Our objective is to bring to the high performance computing marketplace innovations that drive essentially all of HPC, from the very high end of supercomputing to volume workstations,” Hazra told HPCwire.

Intel’s MIC architecture stands to be a big part of that. Hazra says it will be the basis for its manycore processor design for the next decade and beyond. But first they have to hit a moving target. The rapid ascension of general-purpose GPUs into high performance computing over the last three years has given NVIDIA, and to a lesser extent AMD, a formidable head start.

As of October, the fastest supercomputer in the world, the Tianhe-1A, is a GPU-CPU hybrid. That machine delivers 2.5 petaflops on Linpack, with the vast majority of those FLOPS being supplied by the GPUs. There are a handful of other top 100 GPU-powered supercomputers, and more are on the way. If Intel doesn’t have a viable alternative to the GPGPU juggernaut, its chips will be relegated to the role of supporting player in a lot of future supercomputers, not to mention mainstream clusters and high performance workstations.

Although MIC is a modified x86 implementation and is a completely different architecture from GPGPUs, it is aimed to solve the same problem — namely to get a lot of floating point performance in a very energy efficient package. (For a detailed comparison between MIC and the latest generation Fermi GPU, see Michael Wolfe’s in-depth analysis.) It is also intended to be used in the same manner as a GPU, namely as a floating point accelerator connected to a conventional x86 processor. The common thread is that both architectures are using a high degree of parallelism and simple cores to extract a lot of performance per watt.

That’s a valuable attribute for any HPC platform, but it’s critical for the next generation of multi-petaflop supercomputers. Hazra notes the performance increase in the top 100 supercomputers over the last 10 years was achieved mainly via the scale-out model, that is, adding more processors and more nodes. New CPU architectures changed the slope of the performance per watt curve somewhat, but systems have generally gotten larger, thus consuming more power.

That can’t continue for more than a few more years. It’s not practical to build a 500 petaflop system that consumes 300 megawatts. The conventional wisdom suggests power is going to capped at something between 20 and 40 megawatts for a single machine. So you can’t just ride the performance curve of existing Xeons or Opterons and expect to deliver the required performance for these future systems. “As we look out over the next five to ten years, those systems have some fundamental inflection points,” concedes Hazra.

While Intel intends to deliver the performance per watt similar to that of a GPGPU, it will do so in an x86 framework. Hazra says that will allow applications to transition from single-threaded codes to highly-parallel codes without changing the underlying model. Intel will supply compiler and runtime software support for the product, and if it becomes a commercial success, other vendors, no doubt, will add their products as well. Intel will also provide a common set of development tools to be used across the Xeon and MIC products, such that differences between the two architectures are encapsulated within tools. The goal is to be able to recompile any x86 source and have it automatically spit out MIC instructions.

The idea, of course, is to maximize programmer productivity — and not just for new codes, but also for legacy codes that represent years or even decades of investment. Intel does seem to have an advantage here. Although a Xeon-MIC combo is still a heterogeneous platform, it will be a lot more homogeneous, at least from an instruction set point of view, than say a Xeon-GPGPU platform. Hazra believes that the path they are pursuing with the x86 Intel architecture on both sides will allow them to provide a more balanced heterogeneous system. If Intel can truly deliver a minimally-painful software transition from multicore Xeons to manycore MICs, they will have a compelling HPC accelerator offering. “We believe the MIC architecture will become the workhorse as more and more applications and algorithms are able to take advantage of parallelism,” said Hazra.

The first MIC product, codenamed “Knights Corner,” is to be built with the chipmaker’s 22nm process technology. Given that the 22nm fabs will most likely be used for higher volume chips to start, we probably won’t see the first MIC until sometime in 2012. Knights Corner is supposed to be a 50-core chip, but Intel has not as yet supplied any estimated performance metrics.

Meanwhile, the chipmaker will continue to develop its multicore Xeon line that spans the enterprise and “volume” HPC market. Not every HPC application is going to need manycore acceleration, and for those codes that are more aligned with coarse-grained parallelism or are especially geared toward single-threaded performance, Xeons will be the chip of choice.

The Xeon line will continue to be developed using Intel’s 12-month tick-tock cadence — a process shrink followed by a microarchitecture update — used for its mainstream x86 processors. According to Hazra, though, the MIC cadence will be slower, more like a 18-24 month cadence, although in this case each processor update could encapsulate more significant architectural changes. This schedule aligns closely with the pace NVIDIA and AMD have set with their GPGPU offerings, and is pretty much what one would expect for a relatively low-volume accelerator.

The big unknown is if Intel can deliver the goods in time to reverse the GPGPU momentum. NVIDIA and AMD have a three-year head start, which will be extended to five years by the time the first commercial MIC chips hit the streets. Intel as a company doesn’t need to rely on the success of this manycore product for its success, but its HPC aspirations seem to be tied to it. 2012 is shaping up to be an interesting year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This