Intel Charts Its Multicore and Manycore Future for HPC

By Michael Feldman

December 1, 2010

A lot of discussion at this year’s Supercomputing Conference was devoted to manycore architectures and exascale computing — two topics which seem to go hand-in-hand. But as the community hurtles toward the exaflop milestone, it has become clear that the natural evolution of multicore x86 CPUs won’t get the industry very far toward that goal. Manycore GPGPUs, on the other hand, do appear to be a viable path to exascale computing. So where does that leave GPU-less Intel?

In a nutshell, Intel’s answer to GPGPUs is its new Many Integrated Core (MIC) architecture. MIC, which was unveiled at the International Supercomputing Conference (ISC’10) this summer in Germany, is the recycled Larrabee technology that Intel originally developed for the high end graphics and visualization markets. When it became clear that effort wouldn’t yield a competitive alternative to the established GPUs from NVIDIA and AMD, Intel scrapped the project and recast the technology as an HPC accelerator.

To dig a little deeper into Intel’s HPC strategy, HPCwire spoke with Rajeeb Hazra, the general manager for the High Performance Computing group at Intel. A 15-year veteran of Intel, Hazra took over the HPC GM position from Richard Dracott in July of this year. Prior to that, Hazra was the director of the Supercomputing Architecture and Planning (SAP) group, which focuses on designing architectures for the highest end platforms, that is, petaflop and exaflop computing.

His experience in the supercomputing group was fortuitous, given that Intel’s biggest challenge in the server market is likely to be delivering products for the elite end of high performance computing. Today Intel is the dominant processor supplier for all HPC platforms, from top 10 supercomputers, to clusters, and down to high performance clients. The plan is to continue to do so. “Our objective is to bring to the high performance computing marketplace innovations that drive essentially all of HPC, from the very high end of supercomputing to volume workstations,” Hazra told HPCwire.

Intel’s MIC architecture stands to be a big part of that. Hazra says it will be the basis for its manycore processor design for the next decade and beyond. But first they have to hit a moving target. The rapid ascension of general-purpose GPUs into high performance computing over the last three years has given NVIDIA, and to a lesser extent AMD, a formidable head start.

As of October, the fastest supercomputer in the world, the Tianhe-1A, is a GPU-CPU hybrid. That machine delivers 2.5 petaflops on Linpack, with the vast majority of those FLOPS being supplied by the GPUs. There are a handful of other top 100 GPU-powered supercomputers, and more are on the way. If Intel doesn’t have a viable alternative to the GPGPU juggernaut, its chips will be relegated to the role of supporting player in a lot of future supercomputers, not to mention mainstream clusters and high performance workstations.

Although MIC is a modified x86 implementation and is a completely different architecture from GPGPUs, it is aimed to solve the same problem — namely to get a lot of floating point performance in a very energy efficient package. (For a detailed comparison between MIC and the latest generation Fermi GPU, see Michael Wolfe’s in-depth analysis.) It is also intended to be used in the same manner as a GPU, namely as a floating point accelerator connected to a conventional x86 processor. The common thread is that both architectures are using a high degree of parallelism and simple cores to extract a lot of performance per watt.

That’s a valuable attribute for any HPC platform, but it’s critical for the next generation of multi-petaflop supercomputers. Hazra notes the performance increase in the top 100 supercomputers over the last 10 years was achieved mainly via the scale-out model, that is, adding more processors and more nodes. New CPU architectures changed the slope of the performance per watt curve somewhat, but systems have generally gotten larger, thus consuming more power.

That can’t continue for more than a few more years. It’s not practical to build a 500 petaflop system that consumes 300 megawatts. The conventional wisdom suggests power is going to capped at something between 20 and 40 megawatts for a single machine. So you can’t just ride the performance curve of existing Xeons or Opterons and expect to deliver the required performance for these future systems. “As we look out over the next five to ten years, those systems have some fundamental inflection points,” concedes Hazra.

While Intel intends to deliver the performance per watt similar to that of a GPGPU, it will do so in an x86 framework. Hazra says that will allow applications to transition from single-threaded codes to highly-parallel codes without changing the underlying model. Intel will supply compiler and runtime software support for the product, and if it becomes a commercial success, other vendors, no doubt, will add their products as well. Intel will also provide a common set of development tools to be used across the Xeon and MIC products, such that differences between the two architectures are encapsulated within tools. The goal is to be able to recompile any x86 source and have it automatically spit out MIC instructions.

The idea, of course, is to maximize programmer productivity — and not just for new codes, but also for legacy codes that represent years or even decades of investment. Intel does seem to have an advantage here. Although a Xeon-MIC combo is still a heterogeneous platform, it will be a lot more homogeneous, at least from an instruction set point of view, than say a Xeon-GPGPU platform. Hazra believes that the path they are pursuing with the x86 Intel architecture on both sides will allow them to provide a more balanced heterogeneous system. If Intel can truly deliver a minimally-painful software transition from multicore Xeons to manycore MICs, they will have a compelling HPC accelerator offering. “We believe the MIC architecture will become the workhorse as more and more applications and algorithms are able to take advantage of parallelism,” said Hazra.

The first MIC product, codenamed “Knights Corner,” is to be built with the chipmaker’s 22nm process technology. Given that the 22nm fabs will most likely be used for higher volume chips to start, we probably won’t see the first MIC until sometime in 2012. Knights Corner is supposed to be a 50-core chip, but Intel has not as yet supplied any estimated performance metrics.

Meanwhile, the chipmaker will continue to develop its multicore Xeon line that spans the enterprise and “volume” HPC market. Not every HPC application is going to need manycore acceleration, and for those codes that are more aligned with coarse-grained parallelism or are especially geared toward single-threaded performance, Xeons will be the chip of choice.

The Xeon line will continue to be developed using Intel’s 12-month tick-tock cadence — a process shrink followed by a microarchitecture update — used for its mainstream x86 processors. According to Hazra, though, the MIC cadence will be slower, more like a 18-24 month cadence, although in this case each processor update could encapsulate more significant architectural changes. This schedule aligns closely with the pace NVIDIA and AMD have set with their GPGPU offerings, and is pretty much what one would expect for a relatively low-volume accelerator.

The big unknown is if Intel can deliver the goods in time to reverse the GPGPU momentum. NVIDIA and AMD have a three-year head start, which will be extended to five years by the time the first commercial MIC chips hit the streets. Intel as a company doesn’t need to rely on the success of this manycore product for its success, but its HPC aspirations seem to be tied to it. 2012 is shaping up to be an interesting year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). A Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This