Intel Charts Its Multicore and Manycore Future for HPC

By Michael Feldman

December 1, 2010

A lot of discussion at this year’s Supercomputing Conference was devoted to manycore architectures and exascale computing — two topics which seem to go hand-in-hand. But as the community hurtles toward the exaflop milestone, it has become clear that the natural evolution of multicore x86 CPUs won’t get the industry very far toward that goal. Manycore GPGPUs, on the other hand, do appear to be a viable path to exascale computing. So where does that leave GPU-less Intel?

In a nutshell, Intel’s answer to GPGPUs is its new Many Integrated Core (MIC) architecture. MIC, which was unveiled at the International Supercomputing Conference (ISC’10) this summer in Germany, is the recycled Larrabee technology that Intel originally developed for the high end graphics and visualization markets. When it became clear that effort wouldn’t yield a competitive alternative to the established GPUs from NVIDIA and AMD, Intel scrapped the project and recast the technology as an HPC accelerator.

To dig a little deeper into Intel’s HPC strategy, HPCwire spoke with Rajeeb Hazra, the general manager for the High Performance Computing group at Intel. A 15-year veteran of Intel, Hazra took over the HPC GM position from Richard Dracott in July of this year. Prior to that, Hazra was the director of the Supercomputing Architecture and Planning (SAP) group, which focuses on designing architectures for the highest end platforms, that is, petaflop and exaflop computing.

His experience in the supercomputing group was fortuitous, given that Intel’s biggest challenge in the server market is likely to be delivering products for the elite end of high performance computing. Today Intel is the dominant processor supplier for all HPC platforms, from top 10 supercomputers, to clusters, and down to high performance clients. The plan is to continue to do so. “Our objective is to bring to the high performance computing marketplace innovations that drive essentially all of HPC, from the very high end of supercomputing to volume workstations,” Hazra told HPCwire.

Intel’s MIC architecture stands to be a big part of that. Hazra says it will be the basis for its manycore processor design for the next decade and beyond. But first they have to hit a moving target. The rapid ascension of general-purpose GPUs into high performance computing over the last three years has given NVIDIA, and to a lesser extent AMD, a formidable head start.

As of October, the fastest supercomputer in the world, the Tianhe-1A, is a GPU-CPU hybrid. That machine delivers 2.5 petaflops on Linpack, with the vast majority of those FLOPS being supplied by the GPUs. There are a handful of other top 100 GPU-powered supercomputers, and more are on the way. If Intel doesn’t have a viable alternative to the GPGPU juggernaut, its chips will be relegated to the role of supporting player in a lot of future supercomputers, not to mention mainstream clusters and high performance workstations.

Although MIC is a modified x86 implementation and is a completely different architecture from GPGPUs, it is aimed to solve the same problem — namely to get a lot of floating point performance in a very energy efficient package. (For a detailed comparison between MIC and the latest generation Fermi GPU, see Michael Wolfe’s in-depth analysis.) It is also intended to be used in the same manner as a GPU, namely as a floating point accelerator connected to a conventional x86 processor. The common thread is that both architectures are using a high degree of parallelism and simple cores to extract a lot of performance per watt.

That’s a valuable attribute for any HPC platform, but it’s critical for the next generation of multi-petaflop supercomputers. Hazra notes the performance increase in the top 100 supercomputers over the last 10 years was achieved mainly via the scale-out model, that is, adding more processors and more nodes. New CPU architectures changed the slope of the performance per watt curve somewhat, but systems have generally gotten larger, thus consuming more power.

That can’t continue for more than a few more years. It’s not practical to build a 500 petaflop system that consumes 300 megawatts. The conventional wisdom suggests power is going to capped at something between 20 and 40 megawatts for a single machine. So you can’t just ride the performance curve of existing Xeons or Opterons and expect to deliver the required performance for these future systems. “As we look out over the next five to ten years, those systems have some fundamental inflection points,” concedes Hazra.

While Intel intends to deliver the performance per watt similar to that of a GPGPU, it will do so in an x86 framework. Hazra says that will allow applications to transition from single-threaded codes to highly-parallel codes without changing the underlying model. Intel will supply compiler and runtime software support for the product, and if it becomes a commercial success, other vendors, no doubt, will add their products as well. Intel will also provide a common set of development tools to be used across the Xeon and MIC products, such that differences between the two architectures are encapsulated within tools. The goal is to be able to recompile any x86 source and have it automatically spit out MIC instructions.

The idea, of course, is to maximize programmer productivity — and not just for new codes, but also for legacy codes that represent years or even decades of investment. Intel does seem to have an advantage here. Although a Xeon-MIC combo is still a heterogeneous platform, it will be a lot more homogeneous, at least from an instruction set point of view, than say a Xeon-GPGPU platform. Hazra believes that the path they are pursuing with the x86 Intel architecture on both sides will allow them to provide a more balanced heterogeneous system. If Intel can truly deliver a minimally-painful software transition from multicore Xeons to manycore MICs, they will have a compelling HPC accelerator offering. “We believe the MIC architecture will become the workhorse as more and more applications and algorithms are able to take advantage of parallelism,” said Hazra.

The first MIC product, codenamed “Knights Corner,” is to be built with the chipmaker’s 22nm process technology. Given that the 22nm fabs will most likely be used for higher volume chips to start, we probably won’t see the first MIC until sometime in 2012. Knights Corner is supposed to be a 50-core chip, but Intel has not as yet supplied any estimated performance metrics.

Meanwhile, the chipmaker will continue to develop its multicore Xeon line that spans the enterprise and “volume” HPC market. Not every HPC application is going to need manycore acceleration, and for those codes that are more aligned with coarse-grained parallelism or are especially geared toward single-threaded performance, Xeons will be the chip of choice.

The Xeon line will continue to be developed using Intel’s 12-month tick-tock cadence — a process shrink followed by a microarchitecture update — used for its mainstream x86 processors. According to Hazra, though, the MIC cadence will be slower, more like a 18-24 month cadence, although in this case each processor update could encapsulate more significant architectural changes. This schedule aligns closely with the pace NVIDIA and AMD have set with their GPGPU offerings, and is pretty much what one would expect for a relatively low-volume accelerator.

The big unknown is if Intel can deliver the goods in time to reverse the GPGPU momentum. NVIDIA and AMD have a three-year head start, which will be extended to five years by the time the first commercial MIC chips hit the streets. Intel as a company doesn’t need to rely on the success of this manycore product for its success, but its HPC aspirations seem to be tied to it. 2012 is shaping up to be an interesting year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This