Terascale Memory Challenges and Solutions

By Dave Dunning, Randy Mooney, Pat Stolt, Bryan Casper and James E. Jaussi

December 6, 2010

Introduction

Modern computer architectures commonly include one or more CPUs, a cache or caches, a few DDR-based memory channels, rotational and/or solid state disks and one or more Ethernet ports.
 
Figure 1: System blog diagram
Figure 1: System block diagram

A high percentage of CPU-based systems use DDR-based DRAM for external memory. DDR-based DRAM currently provides very favorable cost/bit while providing enough bandwidth with low enough latency to meet the application demands. Although process engineers have continued to find ways to cost effectively scale feature size, the CPU power consumed has become prohibitive.

In contrast to the previous decade, CPU clock rates are scaling slower over time due to the power constraints. However, the number of transistors per silicon area continue to increase roughly at the rate of Moore’s Law. Therefore, CPUs are being designed and built with an increasing number of cores, with each core executing one or more threads of instructions.

This puts a new kind of pressure on the memory subsystem. Though the demand for instructions and data per thread is not increasing very quickly, the rapid growth in the number of available threads puts an increasing emphasis on memory bandwidth. This article summarizes the challenges that arise for the memory subsystem associated with these terascale CPUs.

Memory Key Metrics and Fundamentals

The key metrics for examining the memory sub-systems are bandwidth, capacity, latency, power, system volume, and cost.

Bandwidth (Bytes/second, B/s or bits/second, b/s). Bandwidth is the number of Bytes transferred in a given amount of time. Bandwidth is usually the most talked-about performance metric. The bandwidth required for a system is usually market segment and application (working set size, code arrangement, and structure) dependent. Interestingly, bandwidth alone is not a very useful metric for system design decisions. Other factors must be considered such as cost, power and form factor (size/space) constraints in conjunction with bandwidth.

Capacity (Bytes or B). Capacity is the total number of bytes that can be stored in the region of memory.

Latency (seconds, sec or simply s). This is the time it takes to read a word from the region of memory. The focus is usually on read latency. Write latency is often of less interest; the time required to write to a memory is often not a factor for the performance of the application.

Power (Watts or W). Power equals the energy consumed divided by the time in which that energy is consumed.

System volume, Form Factor. This is the volume required for different technologies into a system. This is usually driven by the physical size of components and/or cooling requirements.

Cost ($). Cost usually refers to the money required to use components in a system.

Often metrics are combined. Frequently used metrics include bandwidth/Cost or Watts/bandwidth (J/bit).

Memory Scaling

Double data rate (DDR) memory has become the dominant memory technology (in terms of number of units sold). DDR-based DRAM products are optimized for high capacity and low cost, not high bandwidth, low latency or low power.

As the CPUs continue to increase in capability toward the terascale level, many of the key metrics are not scaling well and are becoming system design challenges. The metrics being stressed most are bandwidth, power and latency. As potential solutions are investigated, the other metrics of capacity and form factor become challenging as well.

The expression “hitting the memory wall” is often used. Commonly the “memory wall” has the connotation that DDR cannot supply enough bandwidth for CPUs. A more accurate statement is that based on the DDR interface and channel specifications, the bandwidth per pin cannot scale up as quickly as the compute capabilities of CPUs. Simply adding more pins in parallel is not an appealing option due to system cost reasons. The problem becomes acute when CPUs reach the TeraScale performance level. Being more precise, the rate at which bits can be moved between CPUs and DDR devices is limited by the frequency dependent loss, impedance discontinuities, the power available and cost to implement. It will be extremely challenging to push and pull data at rates that exceed 2.4 – 3.2 Gb/s per data signal across DDR channels.

The need to reduce latency and the value of reducing latency is very difficult to assess. Most systems today have put a higher value on bandwidth and choose to use forms of pipelining such as pre-fetching to hide latency. As CPUs approach the terascale range via many threads running in parallel pipeline-based methods to hide memory latency will become less effective. To keep cost and power low, more emphasis will be placed on reducing the latency for the first level of the memory hierarchy that is external to the CPU chip.

Increasing the bandwidth by adding data pins as well as reducing the read latency of DDR devices could be done while maintaining the existing architectures of both the DRAM as well as the interface. However, addressing these bandwidth and latency metrics alone is not enough since one of the greatest challenges to achieving terascale bandwidths is maintaining low power consumption.

DRAM device power is composed of three main components: power consumed by the storage array, power consumed by the datapath and power consumed by the I/O pins. Roughly 50 percent of the power consumed is in the datapath, with the other 50 percent split between I/O circuits and the array. All three areas need to be addressed to create DRAM products suitable for terascale systems.

Evolutionary DRAM Summary

In summary, the key trends for evolutionary memory sub-system scaling are:

•Bandwidth scaling for traditional DDRx-based systems will end at about 2.4 – 3.2 Gb/s per pin (bump).
•To achieve the bit rates above, each channel will likely be limited to one DIMM without extra components, such as buffer on board (motherboard).
•GDDRx gives increased bandwidth but at the cost of capacity. Pin bandwidth will be limited to 5-6 Gb/s for GDDR channels being constructed today.
•Power in the memory sub-system varies from 40-200 mW per Gb/s, translating to hundreds of Watts for a TB/s of bandwidth.
•Adding capacity to evolutionary memory sub-systems is limited to adding channels, buffer on board or other forms of buffered DIMMs.
•Latency improvements for evolutionary systems will be minimal.

Terascale Memory Challenges and Future Memory Technologies

In the following section, we describe some of those challenges facing memory architects and designers and potential solutions.

Memory Technology

The first question we need to ask is which memory technology(s) will fill the needs of these systems. DRAM technology has long dominated the market for off-chip memory bandwidth solutions in computing systems. While non-volatile memory technologies such as NAND Flash and Phase Change Memory are vying for a share of this market, they are at a disadvantage with respect to bandwidth, latency, and power.

A holistic approach is needed to achieve the required results. The main factors that will need to be addressed to achieve the optimal solution for increased bandwidth and lower energy per bit of future terascale memory sub-systems are the channel materials, the I/O density, the memory density, and the memory device architecture. We examine the changes required in these areas.

Channel Materials

First we look at the materials that could be used to construct channels between CPUs and memory modules.

Figure 2: Data Rate versus Trace Length
Figure 2: Data Rate versus Trace Length for different materials

Adding complexity to the I/O circuits in the form of additional equalization, more complex clocking circuits, and possibly data coding can increase the data rate, but also increase the energy per bit moved. More complex interconnects, such as flex cabling, improved board materials, such as Rogers or high-density interconnect (HDI), and eventually, optical solutions, must be considered. The emphasis on higher bandwidth/pin, I/O density and lower energy per bit read/written will lead to selective use of new channel materials.

Memory Density

A DRAM technology that supports a high bandwidth per pin, high capacity and low energy per bit moved will be required. A promising solution to solve these issues is 3-D technology, based on through silicon vias (TSVs). 3-D stacked memory will provide an increase in memory density through stacking, and it will enable a wide datapath from the memory to the external pins, relaxing the per-pin bandwidth requirement in the memory array as shown in Figure 3.

Figure 3: 3-D Stacked Memory Module
Figure 3: 3-D Stacked Memory Module

This design achieves six objectives:

  1. A method for further scaling of DRAM density.
  2. A relatively wide datapath from the memory array to the memory pins, relaxing the speed constraints on the DRAM technology.
  3. A high density connection from the memory module to the memory controller, which makes for more efficient use of power.
  4. The elimination of many of the traditional interconnect components from the electrical path.
  5. It separates the high bandwidth I/O solution from the microprocessor and memory controller power delivery path when using the top of the package for high speed I/O.
  6. The increased density eliminates the need for the electrically-challenged and energy-inefficient, multi-drop DIMM bus.

A key new challenge is introduced; we need a way to move the data from the wide datapath from the memory array to the memory device pins. The general characteristics necessary for an optimal solution are the ability to efficiently multiplex the data at a rate that matches the data rate of the increased device pins (Gb/s), rather than a rate that matches the slower, wider memory datapath, at an efficient energy level (low pJ per bit) that closely matches the characteristics of the CPU generating the memory requests. The architecture, design and implementation of the data collection function will be dependent on the usage of the 3-D memory module, ranging from specialized DRAM chips to a mix of logic process chips and DRAM process chips.

Memory Hierarchy

Given a memory of the type we describe, we must also examine the entire memory hierarchy. For example, it may be advantageous to add a level of memory to the hierarchy.

Analyzing different memory hierarchies is a huge challenge. All the metrics mentioned previously need to be evaluated in the context of the applications of interest (see “Key Metrics”). When considering additional levels of the memory hierarchy, the key decisions are where to add a level or levels in the memory hierarchy and how the levels of memory are managed.

Memory Hierarchy — Where to Add Memory

Earlier, we concluded that to meet the needs of terascale systems, designers should investigate new architectures and manufacturing techniques for DRAM, with an emphasis on 3-D stacking with TSVs. We are confident that these techniques will lead to improved DRAM products, while maintaining a low cost per bit stored. We also realize that when the new technologies are introduced, it will take time for the price per bit to drop. Therefore, early use of 3-D stacked memory as near memory, backed up by DDR-based DRAM or other low cost per bit memory technologies, may be an appealing and cost-effective choice for designers.

The policies of what data (or instructions) are placed, where they are placed as well as what is copied and shared are the key research issues facing system designers. The simple statement that data movement must be minimized will take on additional importance as terascale CPUs are built.

Summary and Conclusions

The demand for bandwidth continues to increase. Terascale CPUs will exacerbate the challenges of the memory subsystem design, including the architecture and design of memory controllers, the memory modules and memory devices themselves. DDR-based memory and interfaces will continue to be used for the markets segments where they can, but the shift to something new will begin in next few years.

To learn more, read the Intel Technology Journal, Volume 13, Issue 4, December 2009, Addressing the Challenges of Tera-scale Computing, ISBN 978-1-934053-23-2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This