Terascale Memory Challenges and Solutions

By Dave Dunning, Randy Mooney, Pat Stolt, Bryan Casper and James E. Jaussi

December 6, 2010

Introduction

Modern computer architectures commonly include one or more CPUs, a cache or caches, a few DDR-based memory channels, rotational and/or solid state disks and one or more Ethernet ports.
 
Figure 1: System blog diagram
Figure 1: System block diagram

A high percentage of CPU-based systems use DDR-based DRAM for external memory. DDR-based DRAM currently provides very favorable cost/bit while providing enough bandwidth with low enough latency to meet the application demands. Although process engineers have continued to find ways to cost effectively scale feature size, the CPU power consumed has become prohibitive.

In contrast to the previous decade, CPU clock rates are scaling slower over time due to the power constraints. However, the number of transistors per silicon area continue to increase roughly at the rate of Moore’s Law. Therefore, CPUs are being designed and built with an increasing number of cores, with each core executing one or more threads of instructions.

This puts a new kind of pressure on the memory subsystem. Though the demand for instructions and data per thread is not increasing very quickly, the rapid growth in the number of available threads puts an increasing emphasis on memory bandwidth. This article summarizes the challenges that arise for the memory subsystem associated with these terascale CPUs.

Memory Key Metrics and Fundamentals

The key metrics for examining the memory sub-systems are bandwidth, capacity, latency, power, system volume, and cost.

Bandwidth (Bytes/second, B/s or bits/second, b/s). Bandwidth is the number of Bytes transferred in a given amount of time. Bandwidth is usually the most talked-about performance metric. The bandwidth required for a system is usually market segment and application (working set size, code arrangement, and structure) dependent. Interestingly, bandwidth alone is not a very useful metric for system design decisions. Other factors must be considered such as cost, power and form factor (size/space) constraints in conjunction with bandwidth.

Capacity (Bytes or B). Capacity is the total number of bytes that can be stored in the region of memory.

Latency (seconds, sec or simply s). This is the time it takes to read a word from the region of memory. The focus is usually on read latency. Write latency is often of less interest; the time required to write to a memory is often not a factor for the performance of the application.

Power (Watts or W). Power equals the energy consumed divided by the time in which that energy is consumed.

System volume, Form Factor. This is the volume required for different technologies into a system. This is usually driven by the physical size of components and/or cooling requirements.

Cost ($). Cost usually refers to the money required to use components in a system.

Often metrics are combined. Frequently used metrics include bandwidth/Cost or Watts/bandwidth (J/bit).

Memory Scaling

Double data rate (DDR) memory has become the dominant memory technology (in terms of number of units sold). DDR-based DRAM products are optimized for high capacity and low cost, not high bandwidth, low latency or low power.

As the CPUs continue to increase in capability toward the terascale level, many of the key metrics are not scaling well and are becoming system design challenges. The metrics being stressed most are bandwidth, power and latency. As potential solutions are investigated, the other metrics of capacity and form factor become challenging as well.

The expression “hitting the memory wall” is often used. Commonly the “memory wall” has the connotation that DDR cannot supply enough bandwidth for CPUs. A more accurate statement is that based on the DDR interface and channel specifications, the bandwidth per pin cannot scale up as quickly as the compute capabilities of CPUs. Simply adding more pins in parallel is not an appealing option due to system cost reasons. The problem becomes acute when CPUs reach the TeraScale performance level. Being more precise, the rate at which bits can be moved between CPUs and DDR devices is limited by the frequency dependent loss, impedance discontinuities, the power available and cost to implement. It will be extremely challenging to push and pull data at rates that exceed 2.4 – 3.2 Gb/s per data signal across DDR channels.

The need to reduce latency and the value of reducing latency is very difficult to assess. Most systems today have put a higher value on bandwidth and choose to use forms of pipelining such as pre-fetching to hide latency. As CPUs approach the terascale range via many threads running in parallel pipeline-based methods to hide memory latency will become less effective. To keep cost and power low, more emphasis will be placed on reducing the latency for the first level of the memory hierarchy that is external to the CPU chip.

Increasing the bandwidth by adding data pins as well as reducing the read latency of DDR devices could be done while maintaining the existing architectures of both the DRAM as well as the interface. However, addressing these bandwidth and latency metrics alone is not enough since one of the greatest challenges to achieving terascale bandwidths is maintaining low power consumption.

DRAM device power is composed of three main components: power consumed by the storage array, power consumed by the datapath and power consumed by the I/O pins. Roughly 50 percent of the power consumed is in the datapath, with the other 50 percent split between I/O circuits and the array. All three areas need to be addressed to create DRAM products suitable for terascale systems.

Evolutionary DRAM Summary

In summary, the key trends for evolutionary memory sub-system scaling are:

•Bandwidth scaling for traditional DDRx-based systems will end at about 2.4 – 3.2 Gb/s per pin (bump).
•To achieve the bit rates above, each channel will likely be limited to one DIMM without extra components, such as buffer on board (motherboard).
•GDDRx gives increased bandwidth but at the cost of capacity. Pin bandwidth will be limited to 5-6 Gb/s for GDDR channels being constructed today.
•Power in the memory sub-system varies from 40-200 mW per Gb/s, translating to hundreds of Watts for a TB/s of bandwidth.
•Adding capacity to evolutionary memory sub-systems is limited to adding channels, buffer on board or other forms of buffered DIMMs.
•Latency improvements for evolutionary systems will be minimal.

Terascale Memory Challenges and Future Memory Technologies

In the following section, we describe some of those challenges facing memory architects and designers and potential solutions.

Memory Technology

The first question we need to ask is which memory technology(s) will fill the needs of these systems. DRAM technology has long dominated the market for off-chip memory bandwidth solutions in computing systems. While non-volatile memory technologies such as NAND Flash and Phase Change Memory are vying for a share of this market, they are at a disadvantage with respect to bandwidth, latency, and power.

A holistic approach is needed to achieve the required results. The main factors that will need to be addressed to achieve the optimal solution for increased bandwidth and lower energy per bit of future terascale memory sub-systems are the channel materials, the I/O density, the memory density, and the memory device architecture. We examine the changes required in these areas.

Channel Materials

First we look at the materials that could be used to construct channels between CPUs and memory modules.

Figure 2: Data Rate versus Trace Length
Figure 2: Data Rate versus Trace Length for different materials

Adding complexity to the I/O circuits in the form of additional equalization, more complex clocking circuits, and possibly data coding can increase the data rate, but also increase the energy per bit moved. More complex interconnects, such as flex cabling, improved board materials, such as Rogers or high-density interconnect (HDI), and eventually, optical solutions, must be considered. The emphasis on higher bandwidth/pin, I/O density and lower energy per bit read/written will lead to selective use of new channel materials.

Memory Density

A DRAM technology that supports a high bandwidth per pin, high capacity and low energy per bit moved will be required. A promising solution to solve these issues is 3-D technology, based on through silicon vias (TSVs). 3-D stacked memory will provide an increase in memory density through stacking, and it will enable a wide datapath from the memory to the external pins, relaxing the per-pin bandwidth requirement in the memory array as shown in Figure 3.

Figure 3: 3-D Stacked Memory Module
Figure 3: 3-D Stacked Memory Module

This design achieves six objectives:

  1. A method for further scaling of DRAM density.
  2. A relatively wide datapath from the memory array to the memory pins, relaxing the speed constraints on the DRAM technology.
  3. A high density connection from the memory module to the memory controller, which makes for more efficient use of power.
  4. The elimination of many of the traditional interconnect components from the electrical path.
  5. It separates the high bandwidth I/O solution from the microprocessor and memory controller power delivery path when using the top of the package for high speed I/O.
  6. The increased density eliminates the need for the electrically-challenged and energy-inefficient, multi-drop DIMM bus.

A key new challenge is introduced; we need a way to move the data from the wide datapath from the memory array to the memory device pins. The general characteristics necessary for an optimal solution are the ability to efficiently multiplex the data at a rate that matches the data rate of the increased device pins (Gb/s), rather than a rate that matches the slower, wider memory datapath, at an efficient energy level (low pJ per bit) that closely matches the characteristics of the CPU generating the memory requests. The architecture, design and implementation of the data collection function will be dependent on the usage of the 3-D memory module, ranging from specialized DRAM chips to a mix of logic process chips and DRAM process chips.

Memory Hierarchy

Given a memory of the type we describe, we must also examine the entire memory hierarchy. For example, it may be advantageous to add a level of memory to the hierarchy.

Analyzing different memory hierarchies is a huge challenge. All the metrics mentioned previously need to be evaluated in the context of the applications of interest (see “Key Metrics”). When considering additional levels of the memory hierarchy, the key decisions are where to add a level or levels in the memory hierarchy and how the levels of memory are managed.

Memory Hierarchy — Where to Add Memory

Earlier, we concluded that to meet the needs of terascale systems, designers should investigate new architectures and manufacturing techniques for DRAM, with an emphasis on 3-D stacking with TSVs. We are confident that these techniques will lead to improved DRAM products, while maintaining a low cost per bit stored. We also realize that when the new technologies are introduced, it will take time for the price per bit to drop. Therefore, early use of 3-D stacked memory as near memory, backed up by DDR-based DRAM or other low cost per bit memory technologies, may be an appealing and cost-effective choice for designers.

The policies of what data (or instructions) are placed, where they are placed as well as what is copied and shared are the key research issues facing system designers. The simple statement that data movement must be minimized will take on additional importance as terascale CPUs are built.

Summary and Conclusions

The demand for bandwidth continues to increase. Terascale CPUs will exacerbate the challenges of the memory subsystem design, including the architecture and design of memory controllers, the memory modules and memory devices themselves. DDR-based memory and interfaces will continue to be used for the markets segments where they can, but the shift to something new will begin in next few years.

To learn more, read the Intel Technology Journal, Volume 13, Issue 4, December 2009, Addressing the Challenges of Tera-scale Computing, ISBN 978-1-934053-23-2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This