The Gathering Storm, Five Years On

By Michael Feldman

December 9, 2010

“Gentlemen, we have run out of money. It is time to start thinking.” That quote, attributed to Physics Nobel Laureate Sir Ernest Rutherford, kicks off the new National Academy of Sciences (NAS) report on the state of US competitiveness in science and technology. This latest work, titled “Rising Above The Gathering Storm, Revisited,” documents what has transpired in the intervening five years since the 2005 publication of the NAS’ landmark report, “Rising Above the Gathering Storm.” And, as the opening quote implies, the authors believe that to maintain US science and technology leadership, we’ll have to start acting a lot smarter.

Here are just a few sobering nuggets from the recent report:

The World Economic Forum ranks the United States 48th in quality of mathematics and science education.

Hon Hai Precision Industry Co. (computer manufacturing) employs more people than the worldwide employment of Apple, Dell, Microsoft, Intel and Sony combined.

United States consumers spend significantly more on potato chips than the government devotes to energy R&D.

GE has now located the majority of its R&D personnel outside the United States.

Eight of the ten global companies with the largest R&D budgets have established R&D facilities in China, India or both.

The United States ranks 27th among developed nations in the proportion of college students receiving undergraduate degrees in science or engineering.

The total annual federal investment in research in mathematics, the physical sciences and engineering is now equal to the increase in United States healthcare costs every nine weeks.

For the next 5-7 years the United States, due to budget limitations, will only be able to send astronauts to the Space Station by purchasing rides on Russian rockets.

In May 2010, a supercomputer produced in China was ranked the world’s second-fastest.

That last one is particularly worrisome. If this latest NAS report had been delayed just a few months, they could have recorded that the Chinese Tianhe-1A system is now ranked the world’s fastest. In fact, the rise of China’s R&D presence over the last half-decade fueled a lot of the more pointed observations in the new study. Although the Asian nation still lags the US in almost all science and technology metrics, the two countries appear to be headed in different directions.

America’s R&D trajectory has been problematic for awhile, though. In 2005, the original Gathering Storm report served as a wake-up call to the feds about how the US could become an also-ran in the science and technology arena. Its main thesis was that tech innovation is the largest single driver for our economy, and should enjoy the level of investment commensurate with that role. And while the number of scientists and engineers is relatively small, comprising a mere four percent of the country’s work force, the work they do has a disproportionate effect on the well-being of the nation. The report argued that eroding the foundation that supports these innovation makers will result in a loss of economic leadership, a decline in the standard of living, and an inability to compete for jobs in the global marketplace.

The 2005 report spelled out four main recommendations: Restore the country’s K-12 education system for science and mathematics back to the top of the global heap; double the federal budget for basic research in math, science and engineering over the next seven years; encourage more students to pursue science and tech careers; and institute tax, patent, immigration and litigation reforms that spur innovation. The price tag for all this: around $19 billion per year.

In fact all of the recommendations could be fully implemented with the amount the US spends on cigarettes each year – with $60 billion left over. Think about that. If you could somehow get smokers to stop committing slow-motion suicide, we’d have enough money to fully fund a robust R&D and education budget for science and technology.

Of course, that’s not likely to happen. But in an era of trillion dollar wars, tax rebates, and entitlement outlays, finding a paltry $19 billion a year certainly seemed to be within reach. And it was. As a response to the original Gathering Storm report, Congress developed the America COMPETES Act, a bill that addressed most of the report’s recommendations. It was designed to significantly increase spending for basic research across a number of federal agencies — the DOE, NSF, NASA, NIST and NOAA, in particular. The bill had broad bipartisan report and the backing of the Bush administration. It was passed and signed into law in 2007.

So what could go wrong? As it turned out, quite a bit.

Appropriations to fund the COMPETES bill’s mandate fell short, especially in regard to science, technology, engineering, and mathematics (STEM) education and workforce development. And of course, the recession of 2008 and 2009 changed the political calculation and economic incentives for everyone. Funding priorities for the government shifted to restoring the financial sector. Meanwhile universities lost endowments and state support.

The subsequent US stimulus funding, encapsulated in the American Recovery and Reinvestment Act (ARRA) restored some of this money, but that legislation was designed as a two-year boost to the economy. And in any case, even the COMPETES Act was a three-year deal, designed to expire in 2010.

Given the current economic climate as well as the emergence of other tech players like China and India, the US situation has become more dire. To quote the authors of the new report:

…The unanimous view of the committee members participating in the preparation of this report is that our nation’s outlook has worsened. While progress has been made in certain areas—for example, launching the Advanced Research Projects Agency-Energy—the latitude to fix the problems being confronted has been severely diminished by the growth of the national debt over this period from $8 trillion to $13 trillion.

Further, in spite of sometimes heroic efforts and occasional very bright spots, our overall public school system—or more accurately 14,000 systems—has shown little sign of improvement, particularly in mathematics and science. Finally, many other nations have been markedly progressing, thereby affecting America’s relative ability to compete effectively for new factories, research laboratories, administrative centers—and jobs. While this progress by other nations is to be both encouraged and welcomed, so too is the notion that Americans wish to continue to be among those peoples who do prosper.

The Gathering Storm Committee’s overall conclusion is that in spite of the efforts of both those in government and the private sector, the outlook for America to compete for quality jobs has further deteriorated over the past five years.

The Gathering Storm increasingly appears to be a Category 5.

The authors concede that the US cannot compete with lower-cost labor markets that can offer “conventional” high-tech workers at a fraction of the cost of what American workers would demand. Rather, they suggest, local workers need to move up the food chain to become high-end innovators, doing the leading-edge work that is more difficult to move offshore.

But the toughest piece of the puzzle will be political. At a time when the federal deficit is ballooning — and deficit hawks are on the ascendency in both parties — allocating funds for additional R&D spending will be an uphill climb. A recent article in USA today points to Congress’ — and especially the GOP’s — growing ambivalence about funding science programs in the face of tightening budgets.

The main problem described by the article is that lawmakers just don’t understand the role of basic research in the innovation cycle. As Al Teich, budget expert at the American Association for the Advancement of Science, pointed out: “Science grants are an easy target for politicians, frankly. The acoustics study is a classic example, he suggests, of politicians ridiculing a study based on an incomplete explanation, while ignoring its more fundamental purpose.”

Such thinking is counter-productive to the long-term prospects of the economy though, according Teich and Gathering Storm proponents. “One seemingly relevant analogy is that a non-solution to making an over-weight aircraft flight-worthy is to remove an engine,” say the NAS authors.

Getting politicians and the public to see the long-term benefits of science and technology investments will be the big hurdle. A 2010 COMPETES Reauthorization bill is winding its way through Congress. That version authorizes $85.6 billion for five years, which actually represents even less funding than the original 2005 bill. In any case, the 2010 bill is currently stuck in the Senate waiting for the lawmakers to take action.

In a speech last week, President Obama reiterated his commitment to increasing the federal R&D funding, calling this is a “Sputnik moment” for the country. Parroting the theme of the NAS report, Obama said:

[A] lot of companies don’t invest in basic research because it doesn’t pay off right away. But that doesn’t mean it’s not essential to our economic future. Forty years ago, it probably didn’t seem useful or profitable for scientists and engineers to figure out how to increase the capacity of integrated circuits. Forty years later, I’m still not sure what that means. What I do know is that discoveries in integrated circuits made back then led to the iPod and cell phones and GPS and CT scans – products that have led to new companies and countless new jobs in manufacturing and retail, and other sectors.

That’s why I’ve set a goal of investing a full 3 percent — not 2 percent, not 2.5 percent — a full 3 percent of our Gross Domestic Product into research and development. That has to be a priority.

We’ll see. Right now, the administration and Congress seem intent on stimulating the economy in more mundane fashion. Currently on the front burner is the $800-$900 billion tax cut package, designed to stimulate some short-term growth from an anemic economy. The COMPETES Reauthorization Bill is one-tenth that size, but it requires our political class to think beyond the next election cycle. Good luck with that.

But if you really want to wallow in some pessimism, check out historian Alfred McCoy’s analysis of the declining fortunes of the US, reprinted this week in Salon. In the article, McCoy predicts the demise of the US as a global superpower by 2025, citing larger geopolitical trends, exacerbated by a lack of innovation leadership:

Under current projections, the United States will find itself in second place behind China (already the world’s second largest economy) in economic output around 2026, and behind India by 2050. Similarly, Chinese innovation is on a trajectory toward world leadership in applied science and military technology sometime between 2020 and 2030, just as America’s current supply of brilliant scientists and engineers retires, without adequate replacement by an ill-educated younger generation.

Reading McCoy’s assessment, one gets the feeling that the country’s deteriorating science and tech foundation is just a symptom of a larger decline, rather than a root cause. That’s a sobering thought, and it certainly isn’t intended to be an excuse to not try to resuscitate the US innovation machine. But it does suggest that just turning up the volume on federal R&D and education is not a panacea for an American Renaissance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire