Mathematica 8 Gets Performance Boost, Integration with Wolfram Alpha

By Michael Feldman

December 14, 2010

The eighth version of Mathematica was released last month, the latest in Wolfram Research’s 22-year-old computational software platform. Although the tool is a relative newcomer to the high performance computing world, a raft of new capabilities have been added over the last several years that are aimed directly at the performance crowd. Mathematica 8 builds on those capabilities and adds some new ones that make it a serious contender for HPC applications.

Focus on performance started in earnest with Mathematica 4 back in 1999. Beginning with that release, Wolfram Research started to incorporate a variety of features and capabilities that improved runtime execution, including optimizing algorithms, supporting linkage of external C and Fortran libraries, and adding the ability to compile code. In 2008, with Mathematica 7, built-in support for multicore parallelism and compute clusters was added.

Mathematics 8 adds a number of new features that should boost performance even further. Perhaps the most important is the ability to generate, compile and link C code. The new feature allows Mathematica code to be automatically translated into C source code. The source can then be driven through a standard compiler (requiring a native Windows or Mac C compiler) and linked into a Mathematica executable for production.

The idea here is to take advantage of the speed of C-compiled code to boost performance of critical pieces of the Mathematic program. Previously Mathematica only supported compilation to a Java-like virtual machine byte-code, which although faster than interpreted execution, tended to be a good deal slower than compiled C code. In one example, a rendering application using vanilla Mathematica delivered just one frame every 10 to 15 seconds, while C compiled code was able to achieve two to four frames per second. Comparable speedups are to be expected from similar compute-intensive codes. All of this can be accomplished without the programmer ever having to write a single line of C.

Better yet, a parallelization option can be applied to a compiled function, which Mathematica will use to create a multi-threaded implementation. This can speed execution even further, assuming of course that the target CPU is multicore.

Compiled C code can be collected in dynamic link libraries (DLLs), which can be sucked back into the application or shared with other Mathematica programs. The ability to link DLLs also means externally developed C and C++ libraries can be incorporated into Mathematica, opening the door to many more performance optimized packages. Prior to this, talking with external C code involved the MathLink interface, which was burdened with the overhead of inter-program communication. Being able to access DLL routines directly makes calling external code much more efficient and straightforward.

For the GPGPU enthusiast, Mathematica 8 brings in support for CUDA and OpenCL. Unfortunately, this feature doesn’t have the seamless automation offered by the C code generation capability. Rather, the targeted algorithm has to be developed in CUDA or OpenCL first and then folded into the program later. Basically, Mathematica automates some of the housekeeping functions, such as downloading code and data to the GPU card, and uploading the results back to the host. GPGPU support can be scaled to utilize all the GPUs on a system, or, using the gridMathematica add-on, across a cluster.

Although you can’t automagically transform an arbitrary function into a GPU version, Mathematica 8 does include a couple dozen built-in functions that are already optimized for CUDA-enabled GPUs (in other words, those from NVIDIA). The functions are spread out across linear algebra, financial simulation, and image processing. The folks at Wolfram Research will undoubtedly be adding more built-in GPU routines in future versions, while also promising a more streamlined approach for GPU support.

Another category of performance improvements is enabled by speedups to a number of core algorithms. These include optimized solvers for integer linear algebra, highly oscillatory functions, transcendental and high-degree polynomial methods, and a number of new special functions. In some cases, the optimizations can boost performance by an order of magnitude or more, depending upon the size of the problem.

Besides the additional performance-boosting capabilities, Mathematica 8 also includes about 500 new built-in functions — an increase that represent nearly the entire function count in the original Mathematica 1 of 1988. The new capabilities in version 8 encapsulate high-level symbolic functions for probability and statistics; permutations and group theory algorithms; financial engineering routines of general utility; control system functions; wavelet analysis functions; graph and network algorithms; and image processing routine.

The last category encompasses some very useful routine for processing visual data. One of the new capabilities is feature detection, such as facial and character recognition. Also included are geometric transformations and image alignment. For video, Mathematica can now import and export individual frames as well as do real-time capture of webcam streams. All of these capabilities can be combined to deliver some rather sophisticated image processing applications on top of an already full-featured computational engine.

Perhaps the most visible addition to version 8 — at least from a user interface point of view — is the integration with Wolfram Alpha, the company’s Web-based computational knowledge engine. There are a number of advantages to marrying Mathematica to its Web spinoff, which, by the way, is itself a Mathematica application at its core.

First is the ability to tap the store of curated data in Wolfram Alpha, which encompasses a large and growing database that spans many technical and non-technical disciplines. It remains to be seen whether giving Mathematica users access to Wolfram Alpha data spurs new applications or will just be used as a sandbox for more customized data-centric applications.

For the application designer, one of the most potentially interesting uses of Wolfram Alpha is the ability to use its free-form linguistic capabilities. So instead of having to define a problem within the strict confines of the Mathematic language, you can use (more or less) natural language. So, for example, summing all the integers from 1 to 1000 would have to be specified as Sum[i, {i, 1, 1000}] in Mathematica, but could be simply stated as “sum integers 1 to 1000′” using the free-form mode.

The English version is automatically converted to Mathematica syntax on the fly, which can then be tweaked and developed separately. Extending the capability a bit further, users can pass Mathematica variables into Wolfram Alpha calculations.

The nice thing about the Mathematica architecture is nearly all its features, including the new ones described here, are included in the core technology. The Wolfram Alpha team has shied away from toolboxes, libraries, and standalone product add-ons (with the exception of gridMathematica). As a result, the new version 8 features can immediately leverage the large foundation of accumulated Mathematica componentry.

In the kickoff for Mathematica 8 at the Wolfram Technology Conference in November, company CEO Stephen Wolfram reiterated his commitment to maintain the platform as a unified, consistent software tool. Keeping the architecture monolithic means they are free to evolve the product through refinement of the individual pieces and the addition of new ones. With this kind of model, the whole is always guaranteed to be greater than the sum of the parts. “We’ve had a very simple strategic methodology,” explained Wolfram. “Just implement everything.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This