Mathematica 8 Gets Performance Boost, Integration with Wolfram Alpha

By Michael Feldman

December 14, 2010

The eighth version of Mathematica was released last month, the latest in Wolfram Research’s 22-year-old computational software platform. Although the tool is a relative newcomer to the high performance computing world, a raft of new capabilities have been added over the last several years that are aimed directly at the performance crowd. Mathematica 8 builds on those capabilities and adds some new ones that make it a serious contender for HPC applications.

Focus on performance started in earnest with Mathematica 4 back in 1999. Beginning with that release, Wolfram Research started to incorporate a variety of features and capabilities that improved runtime execution, including optimizing algorithms, supporting linkage of external C and Fortran libraries, and adding the ability to compile code. In 2008, with Mathematica 7, built-in support for multicore parallelism and compute clusters was added.

Mathematics 8 adds a number of new features that should boost performance even further. Perhaps the most important is the ability to generate, compile and link C code. The new feature allows Mathematica code to be automatically translated into C source code. The source can then be driven through a standard compiler (requiring a native Windows or Mac C compiler) and linked into a Mathematica executable for production.

The idea here is to take advantage of the speed of C-compiled code to boost performance of critical pieces of the Mathematic program. Previously Mathematica only supported compilation to a Java-like virtual machine byte-code, which although faster than interpreted execution, tended to be a good deal slower than compiled C code. In one example, a rendering application using vanilla Mathematica delivered just one frame every 10 to 15 seconds, while C compiled code was able to achieve two to four frames per second. Comparable speedups are to be expected from similar compute-intensive codes. All of this can be accomplished without the programmer ever having to write a single line of C.

Better yet, a parallelization option can be applied to a compiled function, which Mathematica will use to create a multi-threaded implementation. This can speed execution even further, assuming of course that the target CPU is multicore.

Compiled C code can be collected in dynamic link libraries (DLLs), which can be sucked back into the application or shared with other Mathematica programs. The ability to link DLLs also means externally developed C and C++ libraries can be incorporated into Mathematica, opening the door to many more performance optimized packages. Prior to this, talking with external C code involved the MathLink interface, which was burdened with the overhead of inter-program communication. Being able to access DLL routines directly makes calling external code much more efficient and straightforward.

For the GPGPU enthusiast, Mathematica 8 brings in support for CUDA and OpenCL. Unfortunately, this feature doesn’t have the seamless automation offered by the C code generation capability. Rather, the targeted algorithm has to be developed in CUDA or OpenCL first and then folded into the program later. Basically, Mathematica automates some of the housekeeping functions, such as downloading code and data to the GPU card, and uploading the results back to the host. GPGPU support can be scaled to utilize all the GPUs on a system, or, using the gridMathematica add-on, across a cluster.

Although you can’t automagically transform an arbitrary function into a GPU version, Mathematica 8 does include a couple dozen built-in functions that are already optimized for CUDA-enabled GPUs (in other words, those from NVIDIA). The functions are spread out across linear algebra, financial simulation, and image processing. The folks at Wolfram Research will undoubtedly be adding more built-in GPU routines in future versions, while also promising a more streamlined approach for GPU support.

Another category of performance improvements is enabled by speedups to a number of core algorithms. These include optimized solvers for integer linear algebra, highly oscillatory functions, transcendental and high-degree polynomial methods, and a number of new special functions. In some cases, the optimizations can boost performance by an order of magnitude or more, depending upon the size of the problem.

Besides the additional performance-boosting capabilities, Mathematica 8 also includes about 500 new built-in functions — an increase that represent nearly the entire function count in the original Mathematica 1 of 1988. The new capabilities in version 8 encapsulate high-level symbolic functions for probability and statistics; permutations and group theory algorithms; financial engineering routines of general utility; control system functions; wavelet analysis functions; graph and network algorithms; and image processing routine.

The last category encompasses some very useful routine for processing visual data. One of the new capabilities is feature detection, such as facial and character recognition. Also included are geometric transformations and image alignment. For video, Mathematica can now import and export individual frames as well as do real-time capture of webcam streams. All of these capabilities can be combined to deliver some rather sophisticated image processing applications on top of an already full-featured computational engine.

Perhaps the most visible addition to version 8 — at least from a user interface point of view — is the integration with Wolfram Alpha, the company’s Web-based computational knowledge engine. There are a number of advantages to marrying Mathematica to its Web spinoff, which, by the way, is itself a Mathematica application at its core.

First is the ability to tap the store of curated data in Wolfram Alpha, which encompasses a large and growing database that spans many technical and non-technical disciplines. It remains to be seen whether giving Mathematica users access to Wolfram Alpha data spurs new applications or will just be used as a sandbox for more customized data-centric applications.

For the application designer, one of the most potentially interesting uses of Wolfram Alpha is the ability to use its free-form linguistic capabilities. So instead of having to define a problem within the strict confines of the Mathematic language, you can use (more or less) natural language. So, for example, summing all the integers from 1 to 1000 would have to be specified as Sum[i, {i, 1, 1000}] in Mathematica, but could be simply stated as “sum integers 1 to 1000′” using the free-form mode.

The English version is automatically converted to Mathematica syntax on the fly, which can then be tweaked and developed separately. Extending the capability a bit further, users can pass Mathematica variables into Wolfram Alpha calculations.

The nice thing about the Mathematica architecture is nearly all its features, including the new ones described here, are included in the core technology. The Wolfram Alpha team has shied away from toolboxes, libraries, and standalone product add-ons (with the exception of gridMathematica). As a result, the new version 8 features can immediately leverage the large foundation of accumulated Mathematica componentry.

In the kickoff for Mathematica 8 at the Wolfram Technology Conference in November, company CEO Stephen Wolfram reiterated his commitment to maintain the platform as a unified, consistent software tool. Keeping the architecture monolithic means they are free to evolve the product through refinement of the individual pieces and the addition of new ones. With this kind of model, the whole is always guaranteed to be greater than the sum of the parts. “We’ve had a very simple strategic methodology,” explained Wolfram. “Just implement everything.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This