Mathematica 8 Gets Performance Boost, Integration with Wolfram Alpha

By Michael Feldman

December 14, 2010

The eighth version of Mathematica was released last month, the latest in Wolfram Research’s 22-year-old computational software platform. Although the tool is a relative newcomer to the high performance computing world, a raft of new capabilities have been added over the last several years that are aimed directly at the performance crowd. Mathematica 8 builds on those capabilities and adds some new ones that make it a serious contender for HPC applications.

Focus on performance started in earnest with Mathematica 4 back in 1999. Beginning with that release, Wolfram Research started to incorporate a variety of features and capabilities that improved runtime execution, including optimizing algorithms, supporting linkage of external C and Fortran libraries, and adding the ability to compile code. In 2008, with Mathematica 7, built-in support for multicore parallelism and compute clusters was added.

Mathematics 8 adds a number of new features that should boost performance even further. Perhaps the most important is the ability to generate, compile and link C code. The new feature allows Mathematica code to be automatically translated into C source code. The source can then be driven through a standard compiler (requiring a native Windows or Mac C compiler) and linked into a Mathematica executable for production.

The idea here is to take advantage of the speed of C-compiled code to boost performance of critical pieces of the Mathematic program. Previously Mathematica only supported compilation to a Java-like virtual machine byte-code, which although faster than interpreted execution, tended to be a good deal slower than compiled C code. In one example, a rendering application using vanilla Mathematica delivered just one frame every 10 to 15 seconds, while C compiled code was able to achieve two to four frames per second. Comparable speedups are to be expected from similar compute-intensive codes. All of this can be accomplished without the programmer ever having to write a single line of C.

Better yet, a parallelization option can be applied to a compiled function, which Mathematica will use to create a multi-threaded implementation. This can speed execution even further, assuming of course that the target CPU is multicore.

Compiled C code can be collected in dynamic link libraries (DLLs), which can be sucked back into the application or shared with other Mathematica programs. The ability to link DLLs also means externally developed C and C++ libraries can be incorporated into Mathematica, opening the door to many more performance optimized packages. Prior to this, talking with external C code involved the MathLink interface, which was burdened with the overhead of inter-program communication. Being able to access DLL routines directly makes calling external code much more efficient and straightforward.

For the GPGPU enthusiast, Mathematica 8 brings in support for CUDA and OpenCL. Unfortunately, this feature doesn’t have the seamless automation offered by the C code generation capability. Rather, the targeted algorithm has to be developed in CUDA or OpenCL first and then folded into the program later. Basically, Mathematica automates some of the housekeeping functions, such as downloading code and data to the GPU card, and uploading the results back to the host. GPGPU support can be scaled to utilize all the GPUs on a system, or, using the gridMathematica add-on, across a cluster.

Although you can’t automagically transform an arbitrary function into a GPU version, Mathematica 8 does include a couple dozen built-in functions that are already optimized for CUDA-enabled GPUs (in other words, those from NVIDIA). The functions are spread out across linear algebra, financial simulation, and image processing. The folks at Wolfram Research will undoubtedly be adding more built-in GPU routines in future versions, while also promising a more streamlined approach for GPU support.

Another category of performance improvements is enabled by speedups to a number of core algorithms. These include optimized solvers for integer linear algebra, highly oscillatory functions, transcendental and high-degree polynomial methods, and a number of new special functions. In some cases, the optimizations can boost performance by an order of magnitude or more, depending upon the size of the problem.

Besides the additional performance-boosting capabilities, Mathematica 8 also includes about 500 new built-in functions — an increase that represent nearly the entire function count in the original Mathematica 1 of 1988. The new capabilities in version 8 encapsulate high-level symbolic functions for probability and statistics; permutations and group theory algorithms; financial engineering routines of general utility; control system functions; wavelet analysis functions; graph and network algorithms; and image processing routine.

The last category encompasses some very useful routine for processing visual data. One of the new capabilities is feature detection, such as facial and character recognition. Also included are geometric transformations and image alignment. For video, Mathematica can now import and export individual frames as well as do real-time capture of webcam streams. All of these capabilities can be combined to deliver some rather sophisticated image processing applications on top of an already full-featured computational engine.

Perhaps the most visible addition to version 8 — at least from a user interface point of view — is the integration with Wolfram Alpha, the company’s Web-based computational knowledge engine. There are a number of advantages to marrying Mathematica to its Web spinoff, which, by the way, is itself a Mathematica application at its core.

First is the ability to tap the store of curated data in Wolfram Alpha, which encompasses a large and growing database that spans many technical and non-technical disciplines. It remains to be seen whether giving Mathematica users access to Wolfram Alpha data spurs new applications or will just be used as a sandbox for more customized data-centric applications.

For the application designer, one of the most potentially interesting uses of Wolfram Alpha is the ability to use its free-form linguistic capabilities. So instead of having to define a problem within the strict confines of the Mathematic language, you can use (more or less) natural language. So, for example, summing all the integers from 1 to 1000 would have to be specified as Sum[i, {i, 1, 1000}] in Mathematica, but could be simply stated as “sum integers 1 to 1000′” using the free-form mode.

The English version is automatically converted to Mathematica syntax on the fly, which can then be tweaked and developed separately. Extending the capability a bit further, users can pass Mathematica variables into Wolfram Alpha calculations.

The nice thing about the Mathematica architecture is nearly all its features, including the new ones described here, are included in the core technology. The Wolfram Alpha team has shied away from toolboxes, libraries, and standalone product add-ons (with the exception of gridMathematica). As a result, the new version 8 features can immediately leverage the large foundation of accumulated Mathematica componentry.

In the kickoff for Mathematica 8 at the Wolfram Technology Conference in November, company CEO Stephen Wolfram reiterated his commitment to maintain the platform as a unified, consistent software tool. Keeping the architecture monolithic means they are free to evolve the product through refinement of the individual pieces and the addition of new ones. With this kind of model, the whole is always guaranteed to be greater than the sum of the parts. “We’ve had a very simple strategic methodology,” explained Wolfram. “Just implement everything.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This