Enabling Digital Manufacturing: A Strategy to Develop a National Innovation Network

By Jon Riley

January 3, 2011

Just as the electric power infrastructure was the key to a strong manufacturing base a century ago, a digital manufacturing infrastructure is critical to the future of American industry. Economic uncertainty and leaden growth have slowed innovation, but access to cutting edge tools such as high performance modeling and simulation provide a bold path forward, essentially transforming the way America builds.

Of the approximately 300,000 manufacturers in the United States, over 95% are characterized as small and medium sized (SMMs). While millions of Americans are employed by much larger manufacturers such as Boeing or General Electric, SMMs provide more than twice as many jobs. National economic recovery and development is dependent on the revitalization of U.S. manufacturing, and the most efficient way to spur rapid growth is to intensely leverage what already exists.

One of America’s greatest competitive assets is our high performance computing (HPC) modeling and simulation capabilities. This toolset has been steadily developed and utilized by government laboratories, universities, and large companies for years – contributing to the successful manufacture of countless innovations. If shared throughout the entire manufacturing base, America’s global competitiveness will be greatly enhanced, particularly in desirable areas such as high-tech R&D manufacturing and modeling/simulation tools development.

Recent economic challenges have delayed job creation and R&D investment for many manufacturers. Large companies that once led the world in R&D investment are looking to SMMs for serial innovation within the supply chain. HPC is a transformative technology that must be elevated across the entire manufacturing ecosystem to empower simulation-based R&D, design, and manufacturing. Effectively leveraging these tools will transform U.S. manufacturers and their processes resulting in: accelerated development, mass customization, radical new products, lower-cost manufacturing and reduced off shoring.

The Strategy

NCMS proposes the development of a knowledge infrastructure which leverages the wealth of talent, ideas and facilities within our universities, national labs and industrial research centers to bring SMMs access to this desperately needed technology.

Focusing on product design, development and advanced manufacturing, this network will consist of numerous public-private sector collaborations called Predictive Innovation Centers (PIC). Access through a secure web-based portal will allow manufacturers of all sizes to experiment with HPC tools and optimize their own innovation processes – eliminating the heretofore insurmountable cost-up-front barrier that has kept so many SMMs from adopting HPC.

Four Levels of Engagement

The NCMS PIC strategy addresses the entire spectrum of needs within the manufacturing supply chain – from the small engineering shop stuck on 2D CAD software to the global supplier lacking the hardware to fully leverage its simulation tools. The NCMS PIC will be the bridge that links existing education efforts with higher end services, through a progressive set of tools and services that can benefit users at any level of need. The strategy will facilitate upward progression, so users can elevate to a self-sustaining M&S capability. This unique approach is accomplished by engaging customers at four distinct levels.

Educate: Create a low-risk environment for end users to learn about M&S through free/low cost access to interactive demos, and education.

Entice: Clarify the value of advanced modeling and simulation to end-users by providing entry-level evaluative solutions.

Engage: Provide end users more robust modeling and simulation capabilities for specific engineering problems via more sophisticated tools and collaborative engineering projects.

Elevate: Enable full integration and adoption of advanced modeling and simulation at the end user level by providing necessary services and resources.

SMM Engagement and Scalability

The key criteria for successful implementation of a national network will be scalability, affordability, accessibility, and marketability.  The primary means to accomplish these four criteria is to build up a base of virtual tools and services offered to the SMMs.  Reaching small and medium sized manufacturers with new technologies requires a common set of simple M&S tools accessible through the web.  Many of these companies have small engineering shops of 1-2 employees, many of whom wear multiple hats.  Because of the high cost of bringing resources in-house, the lack of available expertise, and the high learning curve, many of these companies have chosen to outsource M&S tasks that are required to meet customer demands.  The PIC infrastructure will give entry-level customers access to simple tools that can provide the same service more effectively, at lower cost, and in a faster turn-around time.  Using an interface that requires simple inputs, inexperienced users will be able to generate their own results because the more complex M&S tasks are running behind the scenes on pre-configured software and hardware.

Though the website, customers will access different M&S resources according to their specific needs.  In line with the PIC’s educational mission, the site will contain information on educational courses and access to various E-learning materials (e.g. games, webinars, and podcasts) as well as links that enable users to run applications and simulations remotely. In addition to the web interface, customers will be able to access resources through a PIC.  Each location will be a full-service center tied into the PIC “cloud” where customers will receive additional training and consulting services, or participate on engineering projects.

The Benefits

Economic Impacts

The scope of this challenge calls for a government wide approach, integrating the strategy and leveraging it with existing investments for sustained economic growth and job creation. While PICs will result in the creation of new jobs at the centers themselves, the true benefits extend much further. Every region, every state, every community is touched by manufacturing. As almost 300,000 SMMs begin to engage HPC, they will grow their existing customer base and expand into new sectors, creating direct, indirect and induced jobs across the nation. The stage is also set for impact beyond manufacturing. New technology companies and service vendors for the growing HPC infrastructure will provide even greater sustained job creation, further supporting and enhancing community, state and regional services and facilities.

Global Competitiveness

U.S. suppliers must be able to affordably leverage predictive simulation-based design and manufacturing tools to solve their problems and explore the wealth of innovative possibilities this technology has to offer. Many foreign governments, including China, Korea and the European Union, have already established public-private partnerships to deliver HPC to their manufacturers. Meanwhile the U.S., the world leader in HPC technologies, is lagging behind.

Broad Collaborative Support

This strategy has evolved out of NCMS’s conversations with senior Administration staff, Congressional officials and Industry leaders, and specifically addresses issues communicated. The successful launch and implementation of this national innovation network requires the participation of the U.S. Government as well as the conceptual concurrence, financial commitment and direct involvement of a broad set of key industry collaborators.

More than 25 industry users and providers have already committed to the strategy, from large OEMs to smaller manufacturers, key HPC industry providers, and academia – this growing alliance has recognized the need for adoption and have committed themselves to the NCMS PIC strategy.

A Proven Collaboration Model

Since 1986, the non-profit National Center for Manufacturing Sciences has been the leader in working with manufacturers and technology providers to drive innovation and support global competitiveness. Every NCMS collaborative effort drives relentlessly toward successful commercialization of innovations. Managing collaboration is both art and science – our role is that of a catalyst. Our network allows us to bring together organizations with similar needs and our collaborative model ensures smooth project operation, intellectual property protection, risk/cost management, and successful commercialization.

Manufacturing is the most fundamental industry in any successful modern economy. A country that cannot make things cannot compete globally. Nor does it end with manufacturing. Nations must also constantly innovate: develop new products, new processes for designing them, and tools for building them. Just as the advent of steam power marked the beginning of the Industrial Revolution, and the appearance of the assembly line sparked the engine that drove the dawn of the modern age, a new game changer has appeared, and the United States must commit to it with the same energy and passion that drives the national interest.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire