Enabling Digital Manufacturing: A Strategy to Develop a National Innovation Network

By Jon Riley

January 3, 2011

Just as the electric power infrastructure was the key to a strong manufacturing base a century ago, a digital manufacturing infrastructure is critical to the future of American industry. Economic uncertainty and leaden growth have slowed innovation, but access to cutting edge tools such as high performance modeling and simulation provide a bold path forward, essentially transforming the way America builds.

Of the approximately 300,000 manufacturers in the United States, over 95% are characterized as small and medium sized (SMMs). While millions of Americans are employed by much larger manufacturers such as Boeing or General Electric, SMMs provide more than twice as many jobs. National economic recovery and development is dependent on the revitalization of U.S. manufacturing, and the most efficient way to spur rapid growth is to intensely leverage what already exists.

One of America’s greatest competitive assets is our high performance computing (HPC) modeling and simulation capabilities. This toolset has been steadily developed and utilized by government laboratories, universities, and large companies for years – contributing to the successful manufacture of countless innovations. If shared throughout the entire manufacturing base, America’s global competitiveness will be greatly enhanced, particularly in desirable areas such as high-tech R&D manufacturing and modeling/simulation tools development.

Recent economic challenges have delayed job creation and R&D investment for many manufacturers. Large companies that once led the world in R&D investment are looking to SMMs for serial innovation within the supply chain. HPC is a transformative technology that must be elevated across the entire manufacturing ecosystem to empower simulation-based R&D, design, and manufacturing. Effectively leveraging these tools will transform U.S. manufacturers and their processes resulting in: accelerated development, mass customization, radical new products, lower-cost manufacturing and reduced off shoring.

The Strategy

NCMS proposes the development of a knowledge infrastructure which leverages the wealth of talent, ideas and facilities within our universities, national labs and industrial research centers to bring SMMs access to this desperately needed technology.

Focusing on product design, development and advanced manufacturing, this network will consist of numerous public-private sector collaborations called Predictive Innovation Centers (PIC). Access through a secure web-based portal will allow manufacturers of all sizes to experiment with HPC tools and optimize their own innovation processes – eliminating the heretofore insurmountable cost-up-front barrier that has kept so many SMMs from adopting HPC.

Four Levels of Engagement

The NCMS PIC strategy addresses the entire spectrum of needs within the manufacturing supply chain – from the small engineering shop stuck on 2D CAD software to the global supplier lacking the hardware to fully leverage its simulation tools. The NCMS PIC will be the bridge that links existing education efforts with higher end services, through a progressive set of tools and services that can benefit users at any level of need. The strategy will facilitate upward progression, so users can elevate to a self-sustaining M&S capability. This unique approach is accomplished by engaging customers at four distinct levels.

Educate: Create a low-risk environment for end users to learn about M&S through free/low cost access to interactive demos, and education.

Entice: Clarify the value of advanced modeling and simulation to end-users by providing entry-level evaluative solutions.

Engage: Provide end users more robust modeling and simulation capabilities for specific engineering problems via more sophisticated tools and collaborative engineering projects.

Elevate: Enable full integration and adoption of advanced modeling and simulation at the end user level by providing necessary services and resources.

SMM Engagement and Scalability

The key criteria for successful implementation of a national network will be scalability, affordability, accessibility, and marketability.  The primary means to accomplish these four criteria is to build up a base of virtual tools and services offered to the SMMs.  Reaching small and medium sized manufacturers with new technologies requires a common set of simple M&S tools accessible through the web.  Many of these companies have small engineering shops of 1-2 employees, many of whom wear multiple hats.  Because of the high cost of bringing resources in-house, the lack of available expertise, and the high learning curve, many of these companies have chosen to outsource M&S tasks that are required to meet customer demands.  The PIC infrastructure will give entry-level customers access to simple tools that can provide the same service more effectively, at lower cost, and in a faster turn-around time.  Using an interface that requires simple inputs, inexperienced users will be able to generate their own results because the more complex M&S tasks are running behind the scenes on pre-configured software and hardware.

Though the website, customers will access different M&S resources according to their specific needs.  In line with the PIC’s educational mission, the site will contain information on educational courses and access to various E-learning materials (e.g. games, webinars, and podcasts) as well as links that enable users to run applications and simulations remotely. In addition to the web interface, customers will be able to access resources through a PIC.  Each location will be a full-service center tied into the PIC “cloud” where customers will receive additional training and consulting services, or participate on engineering projects.

The Benefits

Economic Impacts

The scope of this challenge calls for a government wide approach, integrating the strategy and leveraging it with existing investments for sustained economic growth and job creation. While PICs will result in the creation of new jobs at the centers themselves, the true benefits extend much further. Every region, every state, every community is touched by manufacturing. As almost 300,000 SMMs begin to engage HPC, they will grow their existing customer base and expand into new sectors, creating direct, indirect and induced jobs across the nation. The stage is also set for impact beyond manufacturing. New technology companies and service vendors for the growing HPC infrastructure will provide even greater sustained job creation, further supporting and enhancing community, state and regional services and facilities.

Global Competitiveness

U.S. suppliers must be able to affordably leverage predictive simulation-based design and manufacturing tools to solve their problems and explore the wealth of innovative possibilities this technology has to offer. Many foreign governments, including China, Korea and the European Union, have already established public-private partnerships to deliver HPC to their manufacturers. Meanwhile the U.S., the world leader in HPC technologies, is lagging behind.

Broad Collaborative Support

This strategy has evolved out of NCMS’s conversations with senior Administration staff, Congressional officials and Industry leaders, and specifically addresses issues communicated. The successful launch and implementation of this national innovation network requires the participation of the U.S. Government as well as the conceptual concurrence, financial commitment and direct involvement of a broad set of key industry collaborators.

More than 25 industry users and providers have already committed to the strategy, from large OEMs to smaller manufacturers, key HPC industry providers, and academia – this growing alliance has recognized the need for adoption and have committed themselves to the NCMS PIC strategy.

A Proven Collaboration Model

Since 1986, the non-profit National Center for Manufacturing Sciences has been the leader in working with manufacturers and technology providers to drive innovation and support global competitiveness. Every NCMS collaborative effort drives relentlessly toward successful commercialization of innovations. Managing collaboration is both art and science – our role is that of a catalyst. Our network allows us to bring together organizations with similar needs and our collaborative model ensures smooth project operation, intellectual property protection, risk/cost management, and successful commercialization.

Manufacturing is the most fundamental industry in any successful modern economy. A country that cannot make things cannot compete globally. Nor does it end with manufacturing. Nations must also constantly innovate: develop new products, new processes for designing them, and tools for building them. Just as the advent of steam power marked the beginning of the Industrial Revolution, and the appearance of the assembly line sparked the engine that drove the dawn of the modern age, a new game changer has appeared, and the United States must commit to it with the same energy and passion that drives the national interest.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This