Enabling Digital Manufacturing: A Strategy to Develop a National Innovation Network

By Jon Riley

January 3, 2011

Just as the electric power infrastructure was the key to a strong manufacturing base a century ago, a digital manufacturing infrastructure is critical to the future of American industry. Economic uncertainty and leaden growth have slowed innovation, but access to cutting edge tools such as high performance modeling and simulation provide a bold path forward, essentially transforming the way America builds.

Of the approximately 300,000 manufacturers in the United States, over 95% are characterized as small and medium sized (SMMs). While millions of Americans are employed by much larger manufacturers such as Boeing or General Electric, SMMs provide more than twice as many jobs. National economic recovery and development is dependent on the revitalization of U.S. manufacturing, and the most efficient way to spur rapid growth is to intensely leverage what already exists.

One of America’s greatest competitive assets is our high performance computing (HPC) modeling and simulation capabilities. This toolset has been steadily developed and utilized by government laboratories, universities, and large companies for years – contributing to the successful manufacture of countless innovations. If shared throughout the entire manufacturing base, America’s global competitiveness will be greatly enhanced, particularly in desirable areas such as high-tech R&D manufacturing and modeling/simulation tools development.

Recent economic challenges have delayed job creation and R&D investment for many manufacturers. Large companies that once led the world in R&D investment are looking to SMMs for serial innovation within the supply chain. HPC is a transformative technology that must be elevated across the entire manufacturing ecosystem to empower simulation-based R&D, design, and manufacturing. Effectively leveraging these tools will transform U.S. manufacturers and their processes resulting in: accelerated development, mass customization, radical new products, lower-cost manufacturing and reduced off shoring.

The Strategy

NCMS proposes the development of a knowledge infrastructure which leverages the wealth of talent, ideas and facilities within our universities, national labs and industrial research centers to bring SMMs access to this desperately needed technology.

Focusing on product design, development and advanced manufacturing, this network will consist of numerous public-private sector collaborations called Predictive Innovation Centers (PIC). Access through a secure web-based portal will allow manufacturers of all sizes to experiment with HPC tools and optimize their own innovation processes – eliminating the heretofore insurmountable cost-up-front barrier that has kept so many SMMs from adopting HPC.

Four Levels of Engagement

The NCMS PIC strategy addresses the entire spectrum of needs within the manufacturing supply chain – from the small engineering shop stuck on 2D CAD software to the global supplier lacking the hardware to fully leverage its simulation tools. The NCMS PIC will be the bridge that links existing education efforts with higher end services, through a progressive set of tools and services that can benefit users at any level of need. The strategy will facilitate upward progression, so users can elevate to a self-sustaining M&S capability. This unique approach is accomplished by engaging customers at four distinct levels.

Educate: Create a low-risk environment for end users to learn about M&S through free/low cost access to interactive demos, and education.

Entice: Clarify the value of advanced modeling and simulation to end-users by providing entry-level evaluative solutions.

Engage: Provide end users more robust modeling and simulation capabilities for specific engineering problems via more sophisticated tools and collaborative engineering projects.

Elevate: Enable full integration and adoption of advanced modeling and simulation at the end user level by providing necessary services and resources.

SMM Engagement and Scalability

The key criteria for successful implementation of a national network will be scalability, affordability, accessibility, and marketability.  The primary means to accomplish these four criteria is to build up a base of virtual tools and services offered to the SMMs.  Reaching small and medium sized manufacturers with new technologies requires a common set of simple M&S tools accessible through the web.  Many of these companies have small engineering shops of 1-2 employees, many of whom wear multiple hats.  Because of the high cost of bringing resources in-house, the lack of available expertise, and the high learning curve, many of these companies have chosen to outsource M&S tasks that are required to meet customer demands.  The PIC infrastructure will give entry-level customers access to simple tools that can provide the same service more effectively, at lower cost, and in a faster turn-around time.  Using an interface that requires simple inputs, inexperienced users will be able to generate their own results because the more complex M&S tasks are running behind the scenes on pre-configured software and hardware.

Though the website, customers will access different M&S resources according to their specific needs.  In line with the PIC’s educational mission, the site will contain information on educational courses and access to various E-learning materials (e.g. games, webinars, and podcasts) as well as links that enable users to run applications and simulations remotely. In addition to the web interface, customers will be able to access resources through a PIC.  Each location will be a full-service center tied into the PIC “cloud” where customers will receive additional training and consulting services, or participate on engineering projects.

The Benefits

Economic Impacts

The scope of this challenge calls for a government wide approach, integrating the strategy and leveraging it with existing investments for sustained economic growth and job creation. While PICs will result in the creation of new jobs at the centers themselves, the true benefits extend much further. Every region, every state, every community is touched by manufacturing. As almost 300,000 SMMs begin to engage HPC, they will grow their existing customer base and expand into new sectors, creating direct, indirect and induced jobs across the nation. The stage is also set for impact beyond manufacturing. New technology companies and service vendors for the growing HPC infrastructure will provide even greater sustained job creation, further supporting and enhancing community, state and regional services and facilities.

Global Competitiveness

U.S. suppliers must be able to affordably leverage predictive simulation-based design and manufacturing tools to solve their problems and explore the wealth of innovative possibilities this technology has to offer. Many foreign governments, including China, Korea and the European Union, have already established public-private partnerships to deliver HPC to their manufacturers. Meanwhile the U.S., the world leader in HPC technologies, is lagging behind.

Broad Collaborative Support

This strategy has evolved out of NCMS’s conversations with senior Administration staff, Congressional officials and Industry leaders, and specifically addresses issues communicated. The successful launch and implementation of this national innovation network requires the participation of the U.S. Government as well as the conceptual concurrence, financial commitment and direct involvement of a broad set of key industry collaborators.

More than 25 industry users and providers have already committed to the strategy, from large OEMs to smaller manufacturers, key HPC industry providers, and academia – this growing alliance has recognized the need for adoption and have committed themselves to the NCMS PIC strategy.

A Proven Collaboration Model

Since 1986, the non-profit National Center for Manufacturing Sciences has been the leader in working with manufacturers and technology providers to drive innovation and support global competitiveness. Every NCMS collaborative effort drives relentlessly toward successful commercialization of innovations. Managing collaboration is both art and science – our role is that of a catalyst. Our network allows us to bring together organizations with similar needs and our collaborative model ensures smooth project operation, intellectual property protection, risk/cost management, and successful commercialization.

Manufacturing is the most fundamental industry in any successful modern economy. A country that cannot make things cannot compete globally. Nor does it end with manufacturing. Nations must also constantly innovate: develop new products, new processes for designing them, and tools for building them. Just as the advent of steam power marked the beginning of the Industrial Revolution, and the appearance of the assembly line sparked the engine that drove the dawn of the modern age, a new game changer has appeared, and the United States must commit to it with the same energy and passion that drives the national interest.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This