European Exascale Project Drives Toward Next Supercomputing Milestone

By Nicole Hemsoth

January 6, 2011

With petascale systems now deployed on three continents, the HPC industry is already looking toward the next milestone in supercomputing: exascale computing. In Europe, this activity is centered on the European Exascale Software Initiative (EESI), a project that brings together industry and government organizations committed to helping usher the transition from petascale to exascale systems over the next decade.

To learn more about the EESI, including the organization’s activities and what took place at the recent workshop in Amsterdam, we spoke with two of the key players, including Jean-Yves Berthou, information technologies program director at EDF, and EESI program leader; and Peter Michielse, deputy director at NWO/NCF. We also got the US perspective from Jack Dongarra, who runs the Innovative Computing Laboratory at the University of Tennessee; and Pete Beckman, director of the Argonne Leadership Computing Facility.

HPCwire: Can you describe the EESI project for those who don’t know what it is?

Jean-Yves Berthou: The European Exascale Software Initiative goal is to build a European vision and roadmap to address the challenge of performing scientific computing on the new generation of computers composed of millions of heterogeneous cores which will provide multi-petaflop performance in 2010 and exaflop performances in 2020. These hardware capabilities lead to outstanding technological breakthrough possibilities in computations and simulations, which will be reached only if an international cooperation work program is set up.

This is done through a set of conferences and work groups involving a very large number of HPC European actors, both scientific software developers and users. They will investigate where Europe stands in the overall international HPC landscape, what are its strengths and weaknesses, what are the priority actions, and what cooperation modes should be implemented between Europe and the international community. EESI will also identify the sources of competitiveness for Europe induced by the use of peta/exascale software. It will investigate and propose programs in education and training for the next generation of computational scientists.

The overall challenge must be faced at worldwide level to be attainable. EESI coordinates the European contribution to the International Exascale Software Project (IESP) launched by The Department Of Energy Office of Science and led by Jack Dongarra and Pete Beckman.

EESI is an FP7 Support Action funded by the European Commission under the call INFRA-2010-3.3: Coordination actions, conferences and studies supporting policy development, including international cooperation.

HPCwire: What are the timescales for the project?

Berthou: EESI has been launched on June 1, 2010 for an 18 months duration. A first mapping of the major HPC projects and organizations have be achieved. This mapping have been extended world-wide using IESP inputs and international contacts. This mapping is available on the EESI website.

The EESI workplan is now progressing in two directions. A first set of four working groups is targeting the technological computing domain challenges: hardware and associated software, computer science, numerical analysis and applicative software, that is, scientific and engineering codes. Each working group will produce its own roadmap by June 2011.

A second set of working groups will target the applicative side by looking for major grand challenges in climate and weather forecasting, industrial applications focusing on transportation and energy, physics and engineering sciences, and life science-health-BPM. Each working group will also produce its own roadmap integrating technological inputs identified by the first four working groups.

The economic dimension and impact on European competitiveness of these challenges will be specifically studied. To ensure close collaboration and sharing, one internal workshop will be held in February 2011, where each working group will be invited to present its results and roadmaps.

An overall synthesis will be produced and be presented at a large final public conference in Barcelona.

HPCwire: What is the funder, in this case, the European Commission, expecting to see as outputs from EESI?

Berthou: The expected outputs of the project is an exascale roadmap and set of recommendations to the funding agencies shared by the European HPC community, on software — tools, methods and applications — to be developed for this new generation of supercomputers.

HPCwire: Why does industry feel it is important to be involved in EESI?

Berthou: Exascale systems will engage the HPC community for the next 20 years in defining new generations of applications and simulation platforms. The challenge is particularly severe for multi-physics, multi-scale simulation platforms that will have to combine massively parallel software components developed independently from each others.

Another difficult issue is to deal with legacy codes, which are constantly evolving and have to stay in the forefront of their disciplines. This will require new numerical methods, code architectures, mesh generation tools, and visualization tools. In addition to the applications, all the software layers between the applications and the hardware need to be revisited for peta to exascale computers. Considering that 5 to 10 years are necessary to design, develop and validate a new generation of scientific applications, it is time now for industry to think about exaflop computing.

HPCwire: EESI recently held its first international workshop in Amsterdam. Can you tell us a little about that?

Peter Michielse: EESI held its first internal international workshop on November 9, 2010 in Amsterdam. The workshop has brought together approximately 80 — mostly European — experts in the areas of software development, performance analysis, applications knowledge, funding models and governance aspects in high performance computing.

An important part of the EESI project are the four working groups (WGs) in the area of application grand challenges and the four working groups in enabling techniques for exaflop computing. Each WG is composed of around 15 recognized experts, taking into account both expertise and geographical representation. The goal of each WG is to identify and classify the key challenges in their scientific area or technology component. This includes analysis of European strengths and weaknesses, existing collaborations, existing projects and opportunities for Europe.

During the morning session of the workshop, each WG presented itself, including the topics they view within their scope. Most WGs have been populated by experts, their first meetings have been planned, and an initial list of topics within each WG has been identified. During the discussion some aspects have been added to certain WGs.

The afternoon session started with an overview of the cartography results on HPC and exascale programs worldwide. It turns out that the DOE in the US is making progress in the areas of exascale software centers and co-design centers. Japan is developing its 10-plus petaflop K System, but along with that goes a strategic program on High Performance Computing Infrastructure (HPCI). On strategic programs in China, not so much is known. But it is a fact that developments and actual installations are taking place in petaflop systems that have put China on top of the TOP500 list. In addition, the European Commission, within FP7, has recently opened two calls with significant funding, dedicated to computing systems and exascale computing.

HPCwire: What were the main themes raised at the workshop?

Michielse: Basically, there were two important purposes for the meeting. First was to make sure that each WG was considering the right challenges within its scientific or technology field. During the presentations of the WGs, additional topics were recognized as being part of the WG, including several aspects which typically hold for more than one, or even for all WGs. These aspects include resilience, performance, power consumption and programmability of exascale software and systems.

The second purpose of the meeting was to get informed about US and Asian efforts with respect to their exascale software efforts, and as a result of that, investigate how the EESI Working Group activities align with those efforts and with the activities in IESP with respect to co-design of hardware, software and applications.

It also became clear that there are various challenges in international collaborations ahead, for instance synchronization of activities worldwide and organizational aspects to realize this, and also on how to cope with confidentiality of vendor developments and intellectual property rights.

HPCwire: What is the relationship between EESI and PRACE? And between EESI and other strategic activities in Europe, for example the recent IDC European HPC report? Are they competing or complementary?

Michielse: EESI, PRACE and other strategic initiatives in Europe are not only complementary, but should also strengthen each other. The IDC report gives its view on the opportunities for Europe with respect to future HPC, while the activities of PRACE are directed to building a pan-European infrastructure of Tier-0 HPC systems. The PRACE project not only investigates the actual infrastructure and regulations for that, but also heavily works on applications which are of high interest for European users and scientists.

An important role of EESI is to make sure that Europe is involved in global discussions on hardware, software and applications design and that Europe is involved in setting agendas and making choices for the benefit of European science, industry and economy. EESI could be viewed as the voice of the European HPC activities in a global context. Many people active in EESI are also active in PRACE and DEISA.

HPCwire: Supercomputing is often presented as a race, with nations vying for leadership to preserve industrial, economic and research competitiveness. How does the call for collaboration in exascale balance with this? Does this differ between hardware and software?

Jack Dongarra: Supercomputing capability benefits a broad range of industries, including energy, pharmaceutical, aircraft, automobile, entertainment, and others. More powerful computing capability will allow these diverse industries to more quickly engineer superior new products that could improve a nation’s competitiveness. In addition, there are considerable flow-down benefits that will result from meeting both the hardware and software high performance computing challenges. These would include enhancements to smaller computer systems and many types of consumer electronics, from smartphones to cameras.

With respect to software, it seems clear that the scope of the effort to develop software for exascale must be truly international. In terms of its rationale, scientists in nearly every field now depend upon the software infrastructure of high-end computing to open up new areas of inquiry — for example, the very small, very large, very hazardous, very complex — to dramatically increase their research productivity, and to amplify the social and economic impact of their work.

It serves global scientific communities who need to work together on problems of global significance and leverage distributed resources in transnational configurations. In terms of feasibility, the dimensions of the task — totally redesigning and recreating, in the period of just a few years, the massive software foundation of computational science in order to meet the new realities of extreme-scale computing — are simply too large for any one country, or small consortium of countries, to undertake all on its own.

Standardization is also a minimum requirement for broad international collaboration on development of software components. In addition the international nature of the science will demand further development of global data management tools and standards for shared data.

Pete Beckman: One possible comparison to this effort is the International Space Station. With such a complex endeavor that targets scientific results that can benefit everyone, it is important to bring together collaborative teams of the best scientists from around the globe. By working together we can achieve more and deliver results sooner.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This