NVIDIA ARMs Itself for Heterogeneous Computing Future

By Michael Feldman

January 6, 2011

Well NVIDIA waited exactly five days into the new year to announce a major new direction for its product roadmap. On Wednesday, the GPU-maker — and soon to be CPU-maker — revealed its plans to build heterogeneous processors, which will encompass high performance ARM CPU cores alongside GPU cores. The strategy parallel’s AMD’s Fusion architectural approach that marries x86 CPUs with ATI GPUs on-chip.

The upcoming NVIDIA processors, developed under the codename “Project Denver,” will span NVIDIA’s non-mobile product line, powering personal computers, workstations, servers and supercomputers. The announcement was made by company CEO Jen-Hsun Huang at the annual Consumer Electronics Show (CES) in Las Vegas. Huang called the news “one of the most strategic announcements we have ever made at NVIDIA.” And that might be an understatement.

NVIDIA already uses ARM cores on its Tegra line of processors for mobile computing platforms. That SoC design integrates a 32-bit ARM CPU alongside its GPU cores to power handheld devices such as smartphones, personal digital assistants and tablets. (The company also announced its Tegra 2 generation of processors this week at CES.) With the upcoming Project Denver processors, this heterogeneous platform will be extended across the rest of NVIDIA’s product lines, up to and including the Tesla HPC offerings.

As part of this strategy, the company has obtained rights to develop its own NVIDIA-designed high performance CPU cores using ARM’s future processor architecture. Presumably this will be based on a future 64-bit implementation of the ARM ISA, given that 64-bit computing is the accepted standard outside of the mobile space.

According to the HPC luminary Jack Dongarra, NVIDIA’s decision to marry ARM with GPUs makes sense. “They couldn’t license the X86 architecture and needed a CPU platform for their move to more general computing, integrating both CPU- and GPU-based computing.” he said. “ARM is a logical choice, giving NVIDIA an opportunity to move in both the low power direction and up to high performance computing.”

The overarching rationale here is essentially the same as AMD’s: to glue CPU and GPU logic together on the same chip so as to take advantage of the sequential and parallel processing capabilities, respectively, of the two architectures. The proximity of both logic engines to main memory and on-chip resources makes for a much more efficient computing environment. Integration also affords major power efficiency advantages, something that is absolutely critical in both the handheld space and now the datacenter. In particular, as supercomputers move from petascale to exascale, power constraints will force system builders to abandon monolithic x86-based systems, a process that has already begun with the latest generation of GPGPU-equipped supercomputers.

Each of NVIDIA product lines (Tegra, Quadro, GeForce, and Tesla) have their own roadmaps on how the ARM CPU will be folded in. For the Tesla line, ARM integration will take place on the upcoming “Maxwell” generation, according to Andy Keane, general manager of NVIDIA’s Tesla business. The Maxwell architecture is scheduled to be introduced in 2013, following the “Kepler” GPUs that due to be unveiled later this year.

By moving their entire portfolio to a CPU-GPU architecture, NVIDIA is looking to leverage their R&D costs across all product segments, from handhelds to PCs to supercomputers — in the same way Intel and AMD do with their x86-based chips. In fact, it’s the same business model NVIDIA already employs with their own CUDA GPU architecture.

“The technologies for the future have to have some basis in the volume market,” Keane told HPCwire. “It has to have some reason to exist other than the relatively small volume of the HPC business. That’s why this makes sense.”

The wildcard here is ARM. For this to work, NVIDIA needs to create that volume market in Project Denver clients and servers. For decades, the x86 CPU has been the standard-bearer for non-mobile computing, and this new approach is a direct challenge to that status quo. In announcing the new architecture, Huang pointed out the ARM shipments already far outstrip x86 volume, and, thanks to the rise of mobile computing, that gap is expected to increase substantially over the next four years.

As a result, there are a wealth of existing compiler and other software development tools for ARM platforms. Conveniently, support for Linux (and now Windows) is also in place. “What we have to do for the Tesla business, like we have done currently with the GPU, is to make sure that the [ARM] ecosystem is adapted correctly for HPC,” said Keane.

ARM’s disadvantage is that the architecture’s footprint is currently non-existent in the PC and server arena. Attracting OEMs and system integrators to build non-x86 platforms will certainly be a hurtle for the GPU-maker. However, with the new emphasis on power, especially in the datacenter, the RISC-architected ARM has some real advantages. Combined with a mature software stack and backed by NVIDIA, ARMed GPUs have the potential to upset many segments of x86-dominated computing.

NVIDIA’s new path puts it in much more direct competition with Intel and AMD, who are now all vying for the same market segments, and who will soon have little if any reliance on each other’s chips. With Project Denver processors now gearing up to go head-to-head against Intel MIC/integrated graphics and AMD Fusion chips, this young decade just got a lot more interesting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This