Egyptian Startup Accelerates High Performance Accounting

By Michael Feldman

January 11, 2011

Although Egypt is not exactly the epicenter of high-end computing, a tech startup based in Cairo is looking to make its name in an emerging area of HPC. SilMinds has developed hardware accelerator technology designed to speed up a growing set of financial computing applications. The resulting products represent one of the few hardware-based solutions that support decimal floating point (DFP) math.

SilMinds was founded in 2007 as a research, design and consultancy firm, which is initially focused on providing industry standard IP cores for decimal floating point applications. The company’s chief technology officer, Professor Hossam A.H. Fahmy, was a member of the committee that formulated the IEEE 754-2008 standard for floating point arithmetic, including DFP. According to the SilMinds website, the first products were developed with grant money from the EU-Egypt Innovation Fund.

The company’s initial offering, SilAx, is a configurable vector DFP coprocessor implemented with FPGAs. The card can be equipped with either Altera or Xilinx FPGAs and hooked into any standard PCIe slot with at least four lanes. That makes it compatible with a wide array of x86 servers, HPC or otherwise.

No commercial deployments are yet claimed though. The company is currently talking with solution providers that deal directly with telecom and bank institutions, presumably with the idea of wrapping a complete solution around the SilMinds accelerator and offering it as a turnkey platform.

Keep in mind that decimal floating point operations are a bit of an outlier when it comes to computing. Most applications are performed using binary arithmetic, the natural style of number crunching for microprocessors. Decimal arithmetic can be performed with fixed-point (non-floating point) calculations, but the representations are too limited to support industrial strength money operations.

For example, adding $0.10 to $1.99 is fairly straightforward using fixed-point notation. But even doing something as simple as computing a 10 percent sales tax is problematic, given that 1/10 can only yield an approximate value when converted to binary. Where money is concerned, that’s not a good thing. Round-off errors add up and on a large scale can mean thousands or even millions of dollars end up in the bit bucket.

Decimal floating point, on the other hand, is able to support a much wider range of values than is available for fixed point, and provides much greater precision. Up until fairly recently, there was no encoding standard for DFP. But with the release of the IEEE 754-2008, there is now a vendor-independent specification for 32-, 64- and 128-bit decimal floating point representations and their behavior.

Give the regulatory laws imposed upon financial operations these days, DFP is the standard for nearly all applications in banking, telephone billing, tax calculation, currency conversion, insurance, and risk management. Now with the growing streams of real-time financial transactions zipping around the globe, performance and power efficiency have become looming issues. Some estimate that as much as one-third of the world’s server infrastructure is crunching financial data of some sort.

Demand for even more DFP capability appears poised to take off. Mobile networks are becoming ubiquitous across the globe, which should accelerate the need for real-time billing. Cell phones will soon be used as smart credit cards, able to initiate real-time payments at restaurants, movie theaters, and for a variety of other services (This is already in the works in Europe and Asia.). Smart energy grids are also being planned, which will require an extensive infrastructure to compute spot energy pricing. All these applications will require large-scale DFP.

How much demand actually exists for high performance DFP is anyone’s guess. But SilMinds is trying to position itself squarely in the path of this emerging space. So far, competition is minimal. Other than SilMinds, only IBM has decimal floating point implemented in hardware — in this case its z series computers (z9 and z10) as well as its Power6 and Power7 processors. But those solutions are rather expensive compared to a vanilla x86 server equipped with a SilMinds card.

Hardware is the key to performance, as well as power efficiency. Although DFP software libraries exist, they are relatively slow when it comes to compute-intensive DFP applications like large-scale telephone billing. SilMinds has tested its FPGA-based card solution using IBM’s Telco Billing benchmark and reported a 6X speedup compared to a software implementation on a 3 GHz x86 platform. “For other applications we expect that overall speedups will range from 4 to 5x up to 15x” said Assem El Gamal, SilMinds Design Manager. According to him, the variance depends on how much of the application is spent doing decimal floating point computations. In the case of the Telco benchmark, a fair amount of application run time is spent on disk I/O.

When looking at the performance of the DFP calculations in isolation, the results are even more impressive. SilMinds claims an 80X speedup for the core computation, with greater performance possible if the application can benefit from multiple cards.

Using an FPGA-based approach means the solutions can be customized to squeeze the optimal performance from the application. The hardware is implemented in VHDL code, which is designed, written and maintained by SilMinds. Customers tap into the low-level functionality of the accelerator via a set of provided application programming interfaces (APIs); they are not required to write any VHDL code themselves.

Multiple FPGAs per card and multiple card architectures are under study to support multiprocessing and virtualization, with many simultaneous application instances being afforded the maximum speedup needed by each to achieve maximum server resource savings. SilMinds speculates that datacenter TCO and energy saving could be reduced by 80-90 percent. Also under investigation is a network-centric acceleration architecture that could support SaaS and cloud computing.

A DFP ASIC is in the works as well, which according to SilMinds, has already been validated. The idea here is to get the ultimate in performance, sans the reconfigurability of the FPGA. Also on the horizon is a compiler that will generate the appropriate low-level parallel computations without the need for extensive API calls.

With other HPC technology focused on binary floating point capabilities to support scientific applications, the needs of performance-demanding DFP users have largely gone unserved. Financial regulatory requirements, a new floating point standard, and an expanding application space could propel SilMinds and their market into the limelight.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This