Egyptian Startup Accelerates High Performance Accounting

By Michael Feldman

January 11, 2011

Although Egypt is not exactly the epicenter of high-end computing, a tech startup based in Cairo is looking to make its name in an emerging area of HPC. SilMinds has developed hardware accelerator technology designed to speed up a growing set of financial computing applications. The resulting products represent one of the few hardware-based solutions that support decimal floating point (DFP) math.

SilMinds was founded in 2007 as a research, design and consultancy firm, which is initially focused on providing industry standard IP cores for decimal floating point applications. The company’s chief technology officer, Professor Hossam A.H. Fahmy, was a member of the committee that formulated the IEEE 754-2008 standard for floating point arithmetic, including DFP. According to the SilMinds website, the first products were developed with grant money from the EU-Egypt Innovation Fund.

The company’s initial offering, SilAx, is a configurable vector DFP coprocessor implemented with FPGAs. The card can be equipped with either Altera or Xilinx FPGAs and hooked into any standard PCIe slot with at least four lanes. That makes it compatible with a wide array of x86 servers, HPC or otherwise.

No commercial deployments are yet claimed though. The company is currently talking with solution providers that deal directly with telecom and bank institutions, presumably with the idea of wrapping a complete solution around the SilMinds accelerator and offering it as a turnkey platform.

Keep in mind that decimal floating point operations are a bit of an outlier when it comes to computing. Most applications are performed using binary arithmetic, the natural style of number crunching for microprocessors. Decimal arithmetic can be performed with fixed-point (non-floating point) calculations, but the representations are too limited to support industrial strength money operations.

For example, adding $0.10 to $1.99 is fairly straightforward using fixed-point notation. But even doing something as simple as computing a 10 percent sales tax is problematic, given that 1/10 can only yield an approximate value when converted to binary. Where money is concerned, that’s not a good thing. Round-off errors add up and on a large scale can mean thousands or even millions of dollars end up in the bit bucket.

Decimal floating point, on the other hand, is able to support a much wider range of values than is available for fixed point, and provides much greater precision. Up until fairly recently, there was no encoding standard for DFP. But with the release of the IEEE 754-2008, there is now a vendor-independent specification for 32-, 64- and 128-bit decimal floating point representations and their behavior.

Give the regulatory laws imposed upon financial operations these days, DFP is the standard for nearly all applications in banking, telephone billing, tax calculation, currency conversion, insurance, and risk management. Now with the growing streams of real-time financial transactions zipping around the globe, performance and power efficiency have become looming issues. Some estimate that as much as one-third of the world’s server infrastructure is crunching financial data of some sort.

Demand for even more DFP capability appears poised to take off. Mobile networks are becoming ubiquitous across the globe, which should accelerate the need for real-time billing. Cell phones will soon be used as smart credit cards, able to initiate real-time payments at restaurants, movie theaters, and for a variety of other services (This is already in the works in Europe and Asia.). Smart energy grids are also being planned, which will require an extensive infrastructure to compute spot energy pricing. All these applications will require large-scale DFP.

How much demand actually exists for high performance DFP is anyone’s guess. But SilMinds is trying to position itself squarely in the path of this emerging space. So far, competition is minimal. Other than SilMinds, only IBM has decimal floating point implemented in hardware — in this case its z series computers (z9 and z10) as well as its Power6 and Power7 processors. But those solutions are rather expensive compared to a vanilla x86 server equipped with a SilMinds card.

Hardware is the key to performance, as well as power efficiency. Although DFP software libraries exist, they are relatively slow when it comes to compute-intensive DFP applications like large-scale telephone billing. SilMinds has tested its FPGA-based card solution using IBM’s Telco Billing benchmark and reported a 6X speedup compared to a software implementation on a 3 GHz x86 platform. “For other applications we expect that overall speedups will range from 4 to 5x up to 15x” said Assem El Gamal, SilMinds Design Manager. According to him, the variance depends on how much of the application is spent doing decimal floating point computations. In the case of the Telco benchmark, a fair amount of application run time is spent on disk I/O.

When looking at the performance of the DFP calculations in isolation, the results are even more impressive. SilMinds claims an 80X speedup for the core computation, with greater performance possible if the application can benefit from multiple cards.

Using an FPGA-based approach means the solutions can be customized to squeeze the optimal performance from the application. The hardware is implemented in VHDL code, which is designed, written and maintained by SilMinds. Customers tap into the low-level functionality of the accelerator via a set of provided application programming interfaces (APIs); they are not required to write any VHDL code themselves.

Multiple FPGAs per card and multiple card architectures are under study to support multiprocessing and virtualization, with many simultaneous application instances being afforded the maximum speedup needed by each to achieve maximum server resource savings. SilMinds speculates that datacenter TCO and energy saving could be reduced by 80-90 percent. Also under investigation is a network-centric acceleration architecture that could support SaaS and cloud computing.

A DFP ASIC is in the works as well, which according to SilMinds, has already been validated. The idea here is to get the ultimate in performance, sans the reconfigurability of the FPGA. Also on the horizon is a compiler that will generate the appropriate low-level parallel computations without the need for extensive API calls.

With other HPC technology focused on binary floating point capabilities to support scientific applications, the needs of performance-demanding DFP users have largely gone unserved. Financial regulatory requirements, a new floating point standard, and an expanding application space could propel SilMinds and their market into the limelight.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This