Cloud to Improve Genomic Research at Spanish National Cancer Research Centre

By Paul Parsons and Alfonso Olias

January 13, 2011

Over the last few years, a new global trend has emerged in the field of genomic studies. With the advent of a new generation of analytical instruments, the cost of determining the order of the nucleotides in a DNA molecule (DNA sequencing) has dramatically decreased, resulting in a significant acceleration of a number of basic and applied related biomedical areas.

While a typical sequencing project (de novo determination of an organism genome, for example) used to last several years and millions of dollars in reagents and resources, nowadays even small laboratories are able to sequence the complete genomes of simple organisms in hours, for just a small fraction of the cost.

Big sequencing projects have shifted to the determination of the specific sequences of populations of individuals, which will give us the ability to associate the differences at the sequence level between them (variants) to specific individual traits (those causing diseases like cancer, for example). Consequently, the bottleneck in sequencing projects has shifted from obtaining DNA reads to the alignment and post-processing of the huge amount of read data now available.

To minimize both processing time and memory requirements, specialized algorithms and high-throughput analysis pipelines are being constantly developed.

The need to analyze increasingly large amounts of genomics and proteomics data has meant that research institutions such as the Spanish National Cancer Research Centre (CNIO) allocate an increasing part of their time and budget provisioning, managing and maintaining their scientific computing infrastructure, areas that not their core business.

The Server Labs, a European IT company focused on IT architectures, software engineering and cloud architecture and services, is working with the Bioinformatics Unit, Structural Biology and Biocomputing Programme at CNIO, to develop a cloud-based solution that would meet their genomic processing needs.

With its pay-per-use concept CNIO would benefit from the Cloud saving time and money maintaining and upgrading their internal IT department. Fixed costs will be translated to variable costs in terms of infrastructure, purchases and upgrades of computational resources, software licenses, as well as expert admins and external resources. 

As the number of sequencing experiments which the CNIO runs can also be variable, the cloud not only eliminates potential over-provisioning, but it also prevents the under-provisioning of resources at peak times, which would result in the inability to run scheduled experiments. CNIO is thus able to pass on the risks associated with the planning and allocation of resources to the cloud provider.

Without the need to provide and manage computational resources themselves, CNIO can focus on their core business, scientific research in genomics and proteomics applied to cancer. In addition to providing the elasticity to run experiments on an on-demand basis the cloud also reduces the time to supply the hardware infrastructure and its configuration based on an automated installation and customization of the software running on top of the hardware. A controlled computational environment for the post-processing of experiments allows results to be more easily reproduced, a key objective to researchers across all disciplines.

Data management cloud services facilitate publishing of data over the Internet enabling researchers to easily share results whilst controlling their access. Data storage in the Cloud was designed from the ground-up with high-availability and durability as key objectives.

By storing their experiment data in the cloud, researchers can ensure their data is safely replicated among data centres. These advantages free researchers from time-consuming operational concerns, such as in-house backups and the provisioning and management of servers from which to share their experiment results.

The vast potential benefits of the cloud will enable the Spanish National Cancer Research Centre to speed up its pace of innovation and bring them a faster ROI on their current research efforts.

An Environment for Genomic Processing in the Cloud

The first step towards carrying out genomic processing in the cloud is to identify the requirements that fulfill a suitable computational environment. These include the hardware architecture, the operating system and the genomic processing tools. Together with CNIO we identified the following software packages employed in their typical genomic processing workflows:

  • Burrows-Wheeler Alignment Tool: BWA aligns short DNA sequences (reads) to a reference sequence such as the whole human genome.
  •  Novoalign: Novoalign is a DNA short read mapper implemented by Novocraft Technologies. The tool uses spaced-seed indexing to align either single or paired-end reads by means of Needleman-Wunsch algorithm. The source code is not available for download. However, anybody may download and use these programs free of charge for their research and any other non-profit activities as long as results are published in open journals.
  • SAM tools: After reads alignment, one might want to call variants or view the alignments against the reference genome. SAM tools is an open-source package of software applications which includes an alignments viewer and a consensus base caller tool to provide lists of variants (somatic mutations, SNPs and indels).
  • BEDTools: This software facilitates common genomics tasks for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (.BED) format. BEDTools supports the comparison of sequence alignments allowing the user to compare next-generation sequencing data with both public and custom genome annotation tracks. BEDTools source code in freely available.

Note that, except for Novoalign, all software packages listed above are open source and freely available.

For our initial proof of concept, we decided to run a configured image with Ubuntu 9.10 x64. This ensures that no additional setup tasks are required when launching new instances in the Cloud, and provides a controlled and reproducible environment for genomic processing.  The Amazon EC2 instance type required was a large instance with 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each) and 850 GB of local instance storage.

With this minimum set up we executed some typical genomic workflows suggested to us by CNIO. We found that for their typical workflow with a raw data input between 3 and 20 GB, the total processing time on the cloud would range between 1 and 4 hours, depending on the size of the raw data and whether the sequencing experiment was single or paired-end. With an EC2 instance pricing at 38 cents per hour for large instances, and ignoring additional time required for customization of the workflow, the cost of pure processing tasks totalled less than $2 for a single experiment.

CNIO’s genomic facilities are able to process up to 20-25 sequencing runs in an Illumina GAII sequencer. On average, they expect to analyse about 150 sequencing lanes per year, generating each 30 gigabyte of entry data (average), and totalling up to 3-4.5 terabytes in storage / processing requirements p.a.

We also found the processing times to be comparable to running the same workflow in-house on similar hardware. However, when processing in the cloud, we found that transferring the raw input data from the lab to the Amazon cloud could become a bottleneck, depending on the bandwidth available. We were able to work around this limitation by processing our data on Amazon’s European data centre and avoiding peak-hours for the data uploads. In future a high-speed file-transfer protocol such as Aspera’s could be leveraged to optimize this step.

Maximizing the Advantages of the Cloud

We demonstrated that genomic processing in the Cloud is feasible and cost-effective, while providing a performance on par with in-house hardware. The true benefits of the cloud will become apparent when processing tens or hundreds of experiment jobs in parallel. This would allow researchers, for instance, to run algorithms with slightly different parameters to analyse the impact on their experiment results. At the same time, the resulting framework should incorporate all of the strengths of the cloud, in particular data durability, publishing mechanisms and audit trails to make experiment results reproducible.

For more detailed information please have a look at The Server Labs’ technical blog.
 

—–

Paul Parsons is CTO and chief architect at The Server Labs, Alfonso Olias, also from The Server Labs serves at Senior Consultant.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This