Cloud to Improve Genomic Research at Spanish National Cancer Research Centre

By Paul Parsons and Alfonso Olias

January 13, 2011

Over the last few years, a new global trend has emerged in the field of genomic studies. With the advent of a new generation of analytical instruments, the cost of determining the order of the nucleotides in a DNA molecule (DNA sequencing) has dramatically decreased, resulting in a significant acceleration of a number of basic and applied related biomedical areas.

While a typical sequencing project (de novo determination of an organism genome, for example) used to last several years and millions of dollars in reagents and resources, nowadays even small laboratories are able to sequence the complete genomes of simple organisms in hours, for just a small fraction of the cost.

Big sequencing projects have shifted to the determination of the specific sequences of populations of individuals, which will give us the ability to associate the differences at the sequence level between them (variants) to specific individual traits (those causing diseases like cancer, for example). Consequently, the bottleneck in sequencing projects has shifted from obtaining DNA reads to the alignment and post-processing of the huge amount of read data now available.

To minimize both processing time and memory requirements, specialized algorithms and high-throughput analysis pipelines are being constantly developed.

The need to analyze increasingly large amounts of genomics and proteomics data has meant that research institutions such as the Spanish National Cancer Research Centre (CNIO) allocate an increasing part of their time and budget provisioning, managing and maintaining their scientific computing infrastructure, areas that not their core business.

The Server Labs, a European IT company focused on IT architectures, software engineering and cloud architecture and services, is working with the Bioinformatics Unit, Structural Biology and Biocomputing Programme at CNIO, to develop a cloud-based solution that would meet their genomic processing needs.

With its pay-per-use concept CNIO would benefit from the Cloud saving time and money maintaining and upgrading their internal IT department. Fixed costs will be translated to variable costs in terms of infrastructure, purchases and upgrades of computational resources, software licenses, as well as expert admins and external resources. 

As the number of sequencing experiments which the CNIO runs can also be variable, the cloud not only eliminates potential over-provisioning, but it also prevents the under-provisioning of resources at peak times, which would result in the inability to run scheduled experiments. CNIO is thus able to pass on the risks associated with the planning and allocation of resources to the cloud provider.

Without the need to provide and manage computational resources themselves, CNIO can focus on their core business, scientific research in genomics and proteomics applied to cancer. In addition to providing the elasticity to run experiments on an on-demand basis the cloud also reduces the time to supply the hardware infrastructure and its configuration based on an automated installation and customization of the software running on top of the hardware. A controlled computational environment for the post-processing of experiments allows results to be more easily reproduced, a key objective to researchers across all disciplines.

Data management cloud services facilitate publishing of data over the Internet enabling researchers to easily share results whilst controlling their access. Data storage in the Cloud was designed from the ground-up with high-availability and durability as key objectives.

By storing their experiment data in the cloud, researchers can ensure their data is safely replicated among data centres. These advantages free researchers from time-consuming operational concerns, such as in-house backups and the provisioning and management of servers from which to share their experiment results.

The vast potential benefits of the cloud will enable the Spanish National Cancer Research Centre to speed up its pace of innovation and bring them a faster ROI on their current research efforts.

An Environment for Genomic Processing in the Cloud

The first step towards carrying out genomic processing in the cloud is to identify the requirements that fulfill a suitable computational environment. These include the hardware architecture, the operating system and the genomic processing tools. Together with CNIO we identified the following software packages employed in their typical genomic processing workflows:

  • Burrows-Wheeler Alignment Tool: BWA aligns short DNA sequences (reads) to a reference sequence such as the whole human genome.
  •  Novoalign: Novoalign is a DNA short read mapper implemented by Novocraft Technologies. The tool uses spaced-seed indexing to align either single or paired-end reads by means of Needleman-Wunsch algorithm. The source code is not available for download. However, anybody may download and use these programs free of charge for their research and any other non-profit activities as long as results are published in open journals.
  • SAM tools: After reads alignment, one might want to call variants or view the alignments against the reference genome. SAM tools is an open-source package of software applications which includes an alignments viewer and a consensus base caller tool to provide lists of variants (somatic mutations, SNPs and indels).
  • BEDTools: This software facilitates common genomics tasks for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (.BED) format. BEDTools supports the comparison of sequence alignments allowing the user to compare next-generation sequencing data with both public and custom genome annotation tracks. BEDTools source code in freely available.

Note that, except for Novoalign, all software packages listed above are open source and freely available.

For our initial proof of concept, we decided to run a configured image with Ubuntu 9.10 x64. This ensures that no additional setup tasks are required when launching new instances in the Cloud, and provides a controlled and reproducible environment for genomic processing.  The Amazon EC2 instance type required was a large instance with 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each) and 850 GB of local instance storage.

With this minimum set up we executed some typical genomic workflows suggested to us by CNIO. We found that for their typical workflow with a raw data input between 3 and 20 GB, the total processing time on the cloud would range between 1 and 4 hours, depending on the size of the raw data and whether the sequencing experiment was single or paired-end. With an EC2 instance pricing at 38 cents per hour for large instances, and ignoring additional time required for customization of the workflow, the cost of pure processing tasks totalled less than $2 for a single experiment.

CNIO’s genomic facilities are able to process up to 20-25 sequencing runs in an Illumina GAII sequencer. On average, they expect to analyse about 150 sequencing lanes per year, generating each 30 gigabyte of entry data (average), and totalling up to 3-4.5 terabytes in storage / processing requirements p.a.

We also found the processing times to be comparable to running the same workflow in-house on similar hardware. However, when processing in the cloud, we found that transferring the raw input data from the lab to the Amazon cloud could become a bottleneck, depending on the bandwidth available. We were able to work around this limitation by processing our data on Amazon’s European data centre and avoiding peak-hours for the data uploads. In future a high-speed file-transfer protocol such as Aspera’s could be leveraged to optimize this step.

Maximizing the Advantages of the Cloud

We demonstrated that genomic processing in the Cloud is feasible and cost-effective, while providing a performance on par with in-house hardware. The true benefits of the cloud will become apparent when processing tens or hundreds of experiment jobs in parallel. This would allow researchers, for instance, to run algorithms with slightly different parameters to analyse the impact on their experiment results. At the same time, the resulting framework should incorporate all of the strengths of the cloud, in particular data durability, publishing mechanisms and audit trails to make experiment results reproducible.

For more detailed information please have a look at The Server Labs’ technical blog.
 

—–

Paul Parsons is CTO and chief architect at The Server Labs, Alfonso Olias, also from The Server Labs serves at Senior Consultant.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This