Cloud to Improve Genomic Research at Spanish National Cancer Research Centre

By Paul Parsons and Alfonso Olias

January 13, 2011

Over the last few years, a new global trend has emerged in the field of genomic studies. With the advent of a new generation of analytical instruments, the cost of determining the order of the nucleotides in a DNA molecule (DNA sequencing) has dramatically decreased, resulting in a significant acceleration of a number of basic and applied related biomedical areas.

While a typical sequencing project (de novo determination of an organism genome, for example) used to last several years and millions of dollars in reagents and resources, nowadays even small laboratories are able to sequence the complete genomes of simple organisms in hours, for just a small fraction of the cost.

Big sequencing projects have shifted to the determination of the specific sequences of populations of individuals, which will give us the ability to associate the differences at the sequence level between them (variants) to specific individual traits (those causing diseases like cancer, for example). Consequently, the bottleneck in sequencing projects has shifted from obtaining DNA reads to the alignment and post-processing of the huge amount of read data now available.

To minimize both processing time and memory requirements, specialized algorithms and high-throughput analysis pipelines are being constantly developed.

The need to analyze increasingly large amounts of genomics and proteomics data has meant that research institutions such as the Spanish National Cancer Research Centre (CNIO) allocate an increasing part of their time and budget provisioning, managing and maintaining their scientific computing infrastructure, areas that not their core business.

The Server Labs, a European IT company focused on IT architectures, software engineering and cloud architecture and services, is working with the Bioinformatics Unit, Structural Biology and Biocomputing Programme at CNIO, to develop a cloud-based solution that would meet their genomic processing needs.

With its pay-per-use concept CNIO would benefit from the Cloud saving time and money maintaining and upgrading their internal IT department. Fixed costs will be translated to variable costs in terms of infrastructure, purchases and upgrades of computational resources, software licenses, as well as expert admins and external resources. 

As the number of sequencing experiments which the CNIO runs can also be variable, the cloud not only eliminates potential over-provisioning, but it also prevents the under-provisioning of resources at peak times, which would result in the inability to run scheduled experiments. CNIO is thus able to pass on the risks associated with the planning and allocation of resources to the cloud provider.

Without the need to provide and manage computational resources themselves, CNIO can focus on their core business, scientific research in genomics and proteomics applied to cancer. In addition to providing the elasticity to run experiments on an on-demand basis the cloud also reduces the time to supply the hardware infrastructure and its configuration based on an automated installation and customization of the software running on top of the hardware. A controlled computational environment for the post-processing of experiments allows results to be more easily reproduced, a key objective to researchers across all disciplines.

Data management cloud services facilitate publishing of data over the Internet enabling researchers to easily share results whilst controlling their access. Data storage in the Cloud was designed from the ground-up with high-availability and durability as key objectives.

By storing their experiment data in the cloud, researchers can ensure their data is safely replicated among data centres. These advantages free researchers from time-consuming operational concerns, such as in-house backups and the provisioning and management of servers from which to share their experiment results.

The vast potential benefits of the cloud will enable the Spanish National Cancer Research Centre to speed up its pace of innovation and bring them a faster ROI on their current research efforts.

An Environment for Genomic Processing in the Cloud

The first step towards carrying out genomic processing in the cloud is to identify the requirements that fulfill a suitable computational environment. These include the hardware architecture, the operating system and the genomic processing tools. Together with CNIO we identified the following software packages employed in their typical genomic processing workflows:

  • Burrows-Wheeler Alignment Tool: BWA aligns short DNA sequences (reads) to a reference sequence such as the whole human genome.
  •  Novoalign: Novoalign is a DNA short read mapper implemented by Novocraft Technologies. The tool uses spaced-seed indexing to align either single or paired-end reads by means of Needleman-Wunsch algorithm. The source code is not available for download. However, anybody may download and use these programs free of charge for their research and any other non-profit activities as long as results are published in open journals.
  • SAM tools: After reads alignment, one might want to call variants or view the alignments against the reference genome. SAM tools is an open-source package of software applications which includes an alignments viewer and a consensus base caller tool to provide lists of variants (somatic mutations, SNPs and indels).
  • BEDTools: This software facilitates common genomics tasks for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (.BED) format. BEDTools supports the comparison of sequence alignments allowing the user to compare next-generation sequencing data with both public and custom genome annotation tracks. BEDTools source code in freely available.

Note that, except for Novoalign, all software packages listed above are open source and freely available.

For our initial proof of concept, we decided to run a configured image with Ubuntu 9.10 x64. This ensures that no additional setup tasks are required when launching new instances in the Cloud, and provides a controlled and reproducible environment for genomic processing.  The Amazon EC2 instance type required was a large instance with 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each) and 850 GB of local instance storage.

With this minimum set up we executed some typical genomic workflows suggested to us by CNIO. We found that for their typical workflow with a raw data input between 3 and 20 GB, the total processing time on the cloud would range between 1 and 4 hours, depending on the size of the raw data and whether the sequencing experiment was single or paired-end. With an EC2 instance pricing at 38 cents per hour for large instances, and ignoring additional time required for customization of the workflow, the cost of pure processing tasks totalled less than $2 for a single experiment.

CNIO’s genomic facilities are able to process up to 20-25 sequencing runs in an Illumina GAII sequencer. On average, they expect to analyse about 150 sequencing lanes per year, generating each 30 gigabyte of entry data (average), and totalling up to 3-4.5 terabytes in storage / processing requirements p.a.

We also found the processing times to be comparable to running the same workflow in-house on similar hardware. However, when processing in the cloud, we found that transferring the raw input data from the lab to the Amazon cloud could become a bottleneck, depending on the bandwidth available. We were able to work around this limitation by processing our data on Amazon’s European data centre and avoiding peak-hours for the data uploads. In future a high-speed file-transfer protocol such as Aspera’s could be leveraged to optimize this step.

Maximizing the Advantages of the Cloud

We demonstrated that genomic processing in the Cloud is feasible and cost-effective, while providing a performance on par with in-house hardware. The true benefits of the cloud will become apparent when processing tens or hundreds of experiment jobs in parallel. This would allow researchers, for instance, to run algorithms with slightly different parameters to analyse the impact on their experiment results. At the same time, the resulting framework should incorporate all of the strengths of the cloud, in particular data durability, publishing mechanisms and audit trails to make experiment results reproducible.

For more detailed information please have a look at The Server Labs’ technical blog.
 

—–

Paul Parsons is CTO and chief architect at The Server Labs, Alfonso Olias, also from The Server Labs serves at Senior Consultant.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This