IBM’s Watson Goes Where No Machine Has Gone Before

By Nicole Hemsoth

January 13, 2011

This is just a personal reflection, but if there are two things on television that never get boring, even if I have seen the same episode multiple times, it’s Star Trek: Next Generation and Jeopardy.

To my utter delight, in February, elements of two of my favorite programs are going to meld thematically as IBM’s Watson supercomputer battles it out with history’s most revered trivia champions, Ken Jennings and Brad Rutter.

The IBM researchers behind Watson are confident that they’ve achieved their goal to build a system that can rival mortal abilities to answer questions asked in normal speech–and to do so quickly. As IBM noted of the tournament, which will be held over three days beginning February 14th, this provides the “ultimate challenge because the game’s clues involve analyzing subtle meaning, irony, riddles, and other complexities in which humans excel and computers traditionally do not.”

IBM’s champion has already sparred, with mixed success, against some of the brightest Jeopardy minds during a series of 50 sparring games in advance of the primetime debut, which can be viewed here (along with some neat history behind the machine and its capabilities). Upstairs, in a room filled with servers humming away, Watson was processing quietly…and giving human contenders a run for their money.

Following the airing of the trivia battle, there are very likely going to be fresh rounds of mainstream media comments on the man versus machine debate. News outlets will doubtlessly feature background images of Skynet and other Hollywood versions of “good machines gone bad” because, well, if Watson proves itself on national television, it’s bound to be a little unnerving.

Instead of calling to mind deadly scenes from War Games and countless other sci-fi flicks that feature feral machines with minds of their own hell-bent on destroying their human makers, I think of a kinder, softer version of artificial intelligence (AI) — Lieutenant Commander Data. After all, if there is any Hollywood counterpart to Watson (minus the emotion chip, thank goodness) it’s pop culture’s most-loved Android.

Watson is, in some ways, like a 21st-century prototype of Star Trek’s Data. Both have the equivalent of millions of books built into a natural language processing-based algorithm, both are able to pick up on wordplay subtleties, making them, well, in some ways, “people-smart” and they both have the ability to kick some serious human tail in a head-to-head mental match.

What ordinary viewers might overlook is the power of this context awareness. Watson is not simply answering questions posed simply — “he” is processing vast amounts of context-dependent information presented in natural human speech to arrive at an answer that is based on any number of factors. This is, in a word, absolutely groundbreaking. On a speech and context recognition front, in particular — turning questions that require multifaceted layers of knowledge into answers that rely on a number of variables from any number of sources. The analytics involved are mind-boggling.

And isn’t that what makes Data so fascinating?

The only real difference between Data and Watson, outside of hundreds of years of extra R&D for Data’s wiring, is the human-like veneer — both in terms of appearance and speaking ability. If there’s one thing Watson lacks, it’s the ability to sound like anyone (or anything) but HAL.

This type of artificial intelligence goes far beyond what most of us would consider the great question-answer machine — the search engine. Research and development has been conducted for years to arrive at creating machines that can field simple verbal questions, but these have lacked the algorithmic complexity necessary to arrive at answers based on context.

Just as was at the heart of any number of scenarios involving Data, however, was the inherent question of whether or not, with any amount or development in AI there would be certain core levels of knowledge that even the sophisticated question-answer machines couldn’t get to the heart of. Are there ways to trick to such a context-aware computer — to “stump the chump?”

It will be interesting to see what questions Watson misses and look for patterns that might indicate why a machine might be less proficient at producing an answer with so much of the world’s information storehoused.

But on another note, watching the humans lose to IBM’s marvel of computer engineering would be almost as uncomfortable as watching Worf attempt yoga in a spandex Starfleet uniform. In all fairness to the mortal team, however, it did take IBM multiple tries to a beat a certain chess legend…

As a side issue, IBM’s goal with Watson as a research proof of concept is staggering, but there is clear business value behind the move to take their act to television audiences. If IBM can position itself as a leader in the arena of context-aware machines, the sky is the limit. We already talk to and command our phones, cars, and anything else with a chip, using simple verbal prompts. The company that delivers the power of real speech recognition and processing to any array of consumer and business devices is set to grow.

At a recent conference on cybernetics, the president of the American Association for Artificial Intelligence, when asked what the ultimate goal was for the organization, replied “creating Star Trek’s Mr. Data would be a historic feat of cybernetics, and right now it’s very controversial in computer science whether it can be done. Maybe a self-aware computer can be put into a human-sized body and convinced to live sociable with us and our limitations… that’s a long way head of our technology, but maybe not impossible.”

While indeed, on the sociability, size, and cybernetics front Data is still just science fiction, the advancements that IBM is getting ready to put on display for the world in February seem like a positive sign when it comes to our ability to start interacting personably with our machines.

I’ll be gearing up for the great battle on February 14th. And just to put this out there, if IBM engineers are able to hire Brent Spiner for a little extra context-aware voice-over work, if only for Watson’s primetime television debut, there’s a good chance my head will explode.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This