The Weekly Top Five

By Tiffany Trader

January 13, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the Intel-NVIDIA cross-licensing agreement, the arrival of a Cray supercomputer at Colorado State, advancements in the understanding of storage materials, the latest batch of AAAS Fellows, and UW-Madison’s new HPC cluster.

Intel, NVIDIA Ink Cross-Licensing Agreement

In what is arguably the biggest story this week, representatives from Intel and NVIDIA have hammered out a six-year cross-licensing deal. Intel has agreed to pay NVIDIA $1.5 billion in licensing fees divided into five annual payments, the first due Jan. 18, 2011. The two chipmakers have also agreed to drop all outstanding legal disputes.

In a prepared statement, Jen-Hsun Huang, NVIDIA’s president and chief executive officer, said: “This agreement signals a new era for NVIDIA. Our cross license with Intel reflects the substantial value of our visual and parallel computing technologies. It also underscores the importance of our inventions to the future of personal computing, as well as the expanding markets for mobile and cloud computing.”

For an in-depth explanation, look no farther than HPCwire Editor Michael Feldman’s coverage.

For the time-starved, here’s the meaty bit:

In a nutshell, the agreement provides cross-licensing access to each other’s patents. However, it’s not a license to repurpose one another’s chip designs; rather its an understanding not to sue each other when they bump up against their competitor’s patents. This is important because both NVIDIA and Intel own rich patent portfolios that apply to many areas of computing. Without such an understanding, it’s nearly impossible for engineers to design anything without inadvertently stepping into someone else’s territory. It gives both parties the freedom to build CPUs, GPUs, and everything in between without having to worry about who came up with the original ideas.

Cray Provides CSU with New Supercomputer

Colorado State University has a shiny new Cray supercomputer, thanks to a National Science Foundation grant, worth $627,326. The ISTeC High Performance Computer, made possible by stimulus funding, will provide university researchers with platform for advanced modeling, simulation and analysis at higher levels than were previously available.

According to the official announcement, “the system will support much larger and more complex problems in science and engineering, especially for data intensive applications; add greater physical fidelity to existing models; facilitate application of computing to new areas of research and discovery; and support training to attract new researchers to computational science, engineering and mathematics.”

The midrange Cray XT6m supercomputer has 1,248 cores, 1.6 terabytes of main memory, and 32 terabytes of disk storage. Colorado State researchers plan to use the system for a diverse assortment of data- and compute-intensive applications, among them ultraviolet laser design, weather forecasting, bioinformatics, atmospheric modeling, network traffic analysis, and robotics.

A reception will take place Friday to celebrate the supercomputer’s debut.

DVD Storage Mechanism Revealed

Scientists at Forschungszentrum Jülich, working in tandem with researchers from Finland and Japan, have solved a DVD mystery — not some murder mystery, but the mysterious workings of the DVD storage format itself. The physical basis for the storage mechanism was not previously understood in detail despite the disk’s ubiquity. The team’s findings, published in the current issue of the journal Nature Materials, provide insight into the read and write processes in a DVD.

Using the JUGENE supercomputer as well as the Japanese synchrotron SPring-8, the world’s most powerful x-ray source, the researchers were able to determine the structures of both storage phases for the first time and develop a model that explained the rapid phase change.

From the announcement:

Some 4,000 processors of the Jülich supercomputer JUGENE were used for over four months in order to obtain the necessary precision. In addition to sheer computing power, however, experience in scientific computing and the simulation of condensed matter is essential. [Dr. Robert] Jones [of Forschungszentrum Jülich] notes: “Forschungszentrum Jülich is one of the few places where all these aspects come together.”

The new knowledge is expected to lead to storage media with longer life, larger capacity, or shorter access times.

AAAS Announces New Fellows

This week, the American Association for the Advancement of Science (AAAS) made public its yearly selection of fellows. A total of 503 recipients were named from more than 220 institutions worldwide, including 16 designated with an “Information, Computing, and Communication” affiliation. The honor recognizes individuals who have made significant contributions to the advancement of science and technology. The newly-inducted fellows will be presented with a certificate and a blue and gold rosette pin at the Fellows Forum on Feb. 19 2011, held during the AAAS Annual Meeting in Washington, D.C.

Many academic institutions have released their own announcements, naming faculty members who have been hand-picked for this prestigious group. Among them are the University of Tennessee, Knoxville, the Pacific Northwest National Laboratory, and Louisiana State University. You can read about the selection process here.

UW-Madison Cluster Enlisted to Fight Pollution

Several University of Wisconsin-Madison departments banded together to bring a new HPC cluster to campus. The Euclid cluster, now the largest at UW-Madison, harnesses the power of many computers at once in order to run large-scale computing jobs more quickly. It can also move large datasets and files at high speeds among the cluster’s individual servers.

Euclid was the result of over nine months of planning involving a partnership of several campus departments with vendor assistance coming from Dell, Cisco, Chelsio and APC. The cluster has 261 servers, almost 2,100 Intel Nehalem computer cores, and 13 terabytes of central storage. A peak theoretical performance of 19 teraflops gives Euclid the power of 1,000 average desktop computers. The system’s high-bandwidth, low-latency 10 Gigabit Ethernet interconnect allows for efficient communication between the various servers.

While Euclid was designed to tackle the usual array of HPC applications, such as weather modeling, high energy physics, bioinformatics, and materials design, it is primarily being used for materials science, specifically in the design of novel catalytics, under the direction of professor Manos Mavrikakis. The professor’s research group uses computational chemistry approaches to improve engineering practice in a variety of areas, including chemical processing, alternative energy and pollution prevention. The group is part of worldwide effort to uncover the next generation of catalytic materials and has published its findings in Science, 329, 1633 (2010).

Additional background information is available here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

Peter Shor Wins IEEE 2025 Shannon Award

July 15, 2024

Peter Shor, the MIT mathematician whose ‘Shor’s algorithm’ sent shivers of fear through the encryption community and helped galvanize ongoing efforts to build quantum computers, has been named the 2025 winner of th Read more…

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire