Canada Explores New Frontiers in Astroinformatics

By Nicole Hemsoth

January 17, 2011

In nearly every research discipline, the number of scientific instruments available to add to the stream of data input has been climbing. While this has spurred any number of software developments in recent years, without adequate hardware processing capabilities to handle the delgue, there can be no match for the possibilities that lie in the incoming data.

Accordingly, a number of research institutions are findings new ways to handle the data deluge, both in terms of reinventing grid-based paradigms and looking to cloud computing models to extend already stretched computational resources.

Astronomy is one of several areas that is suffering from the glut of data brought about by more streamlined, complex, and numerous instruments and not surprisingly, researchers are looking to grid and cloud models to handle the well of data.

Researchers Nicholas Ball and David Schade discussed the concept of astroinformatics in detail, stating that, “in the past two decades, astronomy has gone from being starved for data to being flooded by it. This onslaught has now reached the stage where the exploitation of these data has become a named discipline in its own right…This naming follows in analogy from the already established fields of bio- and geoinformatics, which contain their own journals and funding.”

Canada’s astronomy community is, like other nations with advanced astronomy research programs, looking for ways to approach their big data problem in an innovative way that combines elements of both grid and cloud computing. Their efforts could reshape current views of astroinformatics processing and help the country move toward its goals of becoming a global center for advancements in astronomical research. 

The Canadian Advanced Network for Astronomical Research (CANFAR) is behind an ongoing project in conjunction with CANARIE (a national research network organization) to create a cloud-based platform to support astronomy research. The effort is being led by researchers at the University of Victoria in British Columbia in conjunction with the Canadian Astronomy Data Centre (CADC) and with participation from 11 other Canadian universities.

The goal of the project is to “leverage customized virtual compute and storage clouds, providing astronomers with access to many datasets and resources previously constrained by their local hardware environment.”

The CANFAR platform will take advantage of CANARIE’s high-speed network and a number of open source and proprietary cloud and grid computing tools to allow the country’s astronomy researchers to better handle the vast datasets that are being generated by global observatories. It will also be propelled by the storage and compute capabilities from Compute Canada in addition to the expertise from the Herzberg Institute of Astrophysics and the National Research Council of Canada.

CANFAR is driven forward by a number of objectives to support its mission to create a “global machine” that will help researchers further their astronomy goals. The creators of the project stated, “All of the necessary components exist to support science but they don’t work well together in that mission. The type of service layer that is needed to support a high level of integration of these components for astronomy does not exist and needs to be invented, installed, and operated”

What CANFAR Can Do

The value proposition of CANFAR is that it will enable astronomers to process the data from astronomical surveys using a wide array of custom software packages and, of course, to widen the set of computational resources available for these purposes.

A report on the project described CANFAR as “an operational system for the delivery, processing, storage, analysis, and distribution of very large astronomical datasets” and as a project that pulls together a number of Canadian entities, including the Canadian National Research Network (CANARIE), Compute Canada’s extensive grid and storage capabilities, and the CADC data center to create a “unified storage and processing system.”

The report also describes the CANFAR project’s technical details, stating that it has “combined the best features of the grid and cloud processing models by providing a self-configuring virtual cluster deployed on multiple cloud clusters” that takes elements from grid-based services  as well as a number of cloud services, including “Condor, Nimbus or OpenNebula, Eucalyptus or Amazon EC2, Xen, VOSpace, UWS, SSO, CDP and GMS.”

The researchers behind the CANFAR project noted that when considering different virtualization options, they considered both Xen and KVM, but settled on Xen because of its wider popularity at the time and because it was the only one that facility operators had used on an experimental basis in the past.

On the scheduler front, there were complexities because the CANFAR virtual cluster needed a batch job processing system that would provide the functionality of a grid cluster, thus making both Grid Engine and Condor natural options. The team settled on Condor, however, because upon examination of the environment, they found that using Grid Engine would mean that they would have to modify the cluster configuration anytime a VM was added or removed.

The team selected Nimbus as the “glue between cloud clusters” which “examined the workload in the Condor queue and used resources from multiple cloud clusters to create a virtual cluster suitable for the current workload” and used the Nimbus toolkit as the primary cloud technology behind the cloud scheduler.

The team also developed support for openNebula, Eucalyptus and Ec2, but decided on Nimbus because it was open source and permitted the “cloud workload to be intermixed with conventional batch jobs unlike other systems. “ The research team behind CANFAR stated that they believed “that this flexibility makes the deployment more attractive to facility operators.”

With Linux as the operating system and an emphasis on interoperability and open source, CANFAR will be a proving ground for the use of these scheduling and cloud-based management tools on large datasets. In addition to other projects that make use of similar (although diverse in terms of packages used) interoperability and open source paradigms like NASA’s Nebula cloud, there will likely be a number of exciting proof of concept reports that will emerge over the course of the next year.

CANARIE’s vision for the project is that it will also “provide astronomers with novel and more immediate hands-on and interactive ways to process and share very large amounts of data emerging from space exploration.”

In addition to helping research better manage the incredible amounts of data filtering in from collection sites, the project’s goals are also tied to aiding collaboration opportunities among geographically dispersed scientists.

As the CANFAR team noted, “a schematic of contemporary astronomy research shows that the system is essentially a networked global array of infrastructure with scientists and telescopes as I/O devices.”

Slides describing some of the current research challenges and potential benefits as well as some of the context for the project can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This