Canada Explores New Frontiers in Astroinformatics

By Nicole Hemsoth

January 17, 2011

In nearly every research discipline, the number of scientific instruments available to add to the stream of data input has been climbing. While this has spurred any number of software developments in recent years, without adequate hardware processing capabilities to handle the delgue, there can be no match for the possibilities that lie in the incoming data.

Accordingly, a number of research institutions are findings new ways to handle the data deluge, both in terms of reinventing grid-based paradigms and looking to cloud computing models to extend already stretched computational resources.

Astronomy is one of several areas that is suffering from the glut of data brought about by more streamlined, complex, and numerous instruments and not surprisingly, researchers are looking to grid and cloud models to handle the well of data.

Researchers Nicholas Ball and David Schade discussed the concept of astroinformatics in detail, stating that, “in the past two decades, astronomy has gone from being starved for data to being flooded by it. This onslaught has now reached the stage where the exploitation of these data has become a named discipline in its own right…This naming follows in analogy from the already established fields of bio- and geoinformatics, which contain their own journals and funding.”

Canada’s astronomy community is, like other nations with advanced astronomy research programs, looking for ways to approach their big data problem in an innovative way that combines elements of both grid and cloud computing. Their efforts could reshape current views of astroinformatics processing and help the country move toward its goals of becoming a global center for advancements in astronomical research. 

The Canadian Advanced Network for Astronomical Research (CANFAR) is behind an ongoing project in conjunction with CANARIE (a national research network organization) to create a cloud-based platform to support astronomy research. The effort is being led by researchers at the University of Victoria in British Columbia in conjunction with the Canadian Astronomy Data Centre (CADC) and with participation from 11 other Canadian universities.

The goal of the project is to “leverage customized virtual compute and storage clouds, providing astronomers with access to many datasets and resources previously constrained by their local hardware environment.”

The CANFAR platform will take advantage of CANARIE’s high-speed network and a number of open source and proprietary cloud and grid computing tools to allow the country’s astronomy researchers to better handle the vast datasets that are being generated by global observatories. It will also be propelled by the storage and compute capabilities from Compute Canada in addition to the expertise from the Herzberg Institute of Astrophysics and the National Research Council of Canada.

CANFAR is driven forward by a number of objectives to support its mission to create a “global machine” that will help researchers further their astronomy goals. The creators of the project stated, “All of the necessary components exist to support science but they don’t work well together in that mission. The type of service layer that is needed to support a high level of integration of these components for astronomy does not exist and needs to be invented, installed, and operated”

What CANFAR Can Do

The value proposition of CANFAR is that it will enable astronomers to process the data from astronomical surveys using a wide array of custom software packages and, of course, to widen the set of computational resources available for these purposes.

A report on the project described CANFAR as “an operational system for the delivery, processing, storage, analysis, and distribution of very large astronomical datasets” and as a project that pulls together a number of Canadian entities, including the Canadian National Research Network (CANARIE), Compute Canada’s extensive grid and storage capabilities, and the CADC data center to create a “unified storage and processing system.”

The report also describes the CANFAR project’s technical details, stating that it has “combined the best features of the grid and cloud processing models by providing a self-configuring virtual cluster deployed on multiple cloud clusters” that takes elements from grid-based services  as well as a number of cloud services, including “Condor, Nimbus or OpenNebula, Eucalyptus or Amazon EC2, Xen, VOSpace, UWS, SSO, CDP and GMS.”

The researchers behind the CANFAR project noted that when considering different virtualization options, they considered both Xen and KVM, but settled on Xen because of its wider popularity at the time and because it was the only one that facility operators had used on an experimental basis in the past.

On the scheduler front, there were complexities because the CANFAR virtual cluster needed a batch job processing system that would provide the functionality of a grid cluster, thus making both Grid Engine and Condor natural options. The team settled on Condor, however, because upon examination of the environment, they found that using Grid Engine would mean that they would have to modify the cluster configuration anytime a VM was added or removed.

The team selected Nimbus as the “glue between cloud clusters” which “examined the workload in the Condor queue and used resources from multiple cloud clusters to create a virtual cluster suitable for the current workload” and used the Nimbus toolkit as the primary cloud technology behind the cloud scheduler.

The team also developed support for openNebula, Eucalyptus and Ec2, but decided on Nimbus because it was open source and permitted the “cloud workload to be intermixed with conventional batch jobs unlike other systems. “ The research team behind CANFAR stated that they believed “that this flexibility makes the deployment more attractive to facility operators.”

With Linux as the operating system and an emphasis on interoperability and open source, CANFAR will be a proving ground for the use of these scheduling and cloud-based management tools on large datasets. In addition to other projects that make use of similar (although diverse in terms of packages used) interoperability and open source paradigms like NASA’s Nebula cloud, there will likely be a number of exciting proof of concept reports that will emerge over the course of the next year.

CANARIE’s vision for the project is that it will also “provide astronomers with novel and more immediate hands-on and interactive ways to process and share very large amounts of data emerging from space exploration.”

In addition to helping research better manage the incredible amounts of data filtering in from collection sites, the project’s goals are also tied to aiding collaboration opportunities among geographically dispersed scientists.

As the CANFAR team noted, “a schematic of contemporary astronomy research shows that the system is essentially a networked global array of infrastructure with scientists and telescopes as I/O devices.”

Slides describing some of the current research challenges and potential benefits as well as some of the context for the project can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This