Algorithms Engulf Wall Street

By Michael Feldman

January 19, 2011

Algorithmic trading is getting another cycle of press scrutiny, thanks mainly to a very well-researched article in Wired by Reuters financial blogger Felix Salmon and Ars Technica writer Jon Stokes. In it, they outline how pervasive these high-tech algorithms have become to the everyday running of financial trading. And the problem is no one knows how this software drives the market behavior — not the investors, not the traders, and not even the people who run Wall Street.

The motivation for all this high-tech trading is, of course, money. And in this case, he who develops the fastest system usually wins. This often comes down to placing the trading servers in the same room as the stock exchange servers to get that millisecond edge on executing transactions. The code too is designed for maximum speed, being constantly tweaked to squeeze the last ounce of performance from the underlying computer chips. Appro recently launched a server based on overclocked Intel “Westmere” CPUs, to give high frequency traders that extra speed boost. But all that digitally enhanced speed means it’s that much harder for humans to control.

That’s partly because that computer-generated bids can be executed so quickly (10,000 bids per second for a single stock) and in such a complex manner that humans cannot comprehend the ramifications. The feedback loops become intertwined, such that the entire trading system exhibits emergent behavior, untraceable to any particular piece of code.

In a recent interview on NPR’s Fresh Air program, Salmon declared. “The man danger about algorithmic trading is that we simply don’t understand it.” He says although the individual algorithms are controlled, and presumably understood, by their masters, the interactions between them are not.

In researching his article, Salmon talked with Michael Kearns, a CS Prof at the University of Pennsylvania, who has developed algorithms for various Wall Street firms. Kearns told him that the financial markets have become what he called an “automated adaptive dynamical system with feedback.” That may sound very cool, but according to Kearns there is no science he’s aware of that is able to understand such a system.

It should come as no surprise that occasionally such a system would run the financial markets into a ditch. That happened last May, with the so-called flash crash, when the Dow Jones Industrial Average plummeted 900 points in a matter of minutes — before regaining most of its value. The cause was traced to a relatively obscure mutual fund company that decided to make a very large trade in a very short amount of time (about 20 minutes). The algorithms monitoring the market interpreted this as a panic and came to the same decision all at once: sell. The reason the mutual fund company decided to dump the shares in the first place was to hedge against the possibility of a future stock market drop. Talk about self-fulfilling prophesies.

In the wake of the flash crash, the Securities and Exchange Commission (SEC) announced some measures intended to prevent a reoccurrence. These include “circuit breakers” procedures, such as automatically halting trading when a stocks share price fluctuates by more than 10 percent in 5 minutes. The SEC is also considering other measures like limiting the size and speed of trades and requiring a complete audit trail of all transactions.

But Salmon considers those rather crude remedies for such a tightly wound system. The flash crash event was actually a rather simple example of what could go wrong. The interactions between all the analytic software inhabiting Wall Street datacenters is much more complex. For example, unlike that mutual fund company that executed the large trade all at once, algorithmic trading software tries to hide a big buy or sell events with a series of smaller transactions so as not to tip their hand.

Meanwhile, other algorithms are simultaneously monitoring the activity to discern the larger patterns that the other codes are trying to hide. In some cases, even more devious codes will purposely initiate transactions with no intention of executing them in order to confuse their rival software. It’s very much algorithmic warfare, with no real thought given to collateral damage.

The quantitative analysts themselves have become somewhat innocent bystanders. The Wired article describes a typical quant shop, in this case Berkeley-based Voleon Capital Management, that specializes in statistical arbitrage. The idea is to process mounds of financial data, looking for patterns that would point to an profitable arbitrage opportunity. But the quants have no knowledge of the underlying fundamentals of the assets; they are simply looking for patterns. To them, it’s just a pile of bits unrelated to any larger reality.

The software is becoming more sophisticated too. Salmon documents a recently launched service, called Dow Jones Lexicon, that mines the text in financial news stories and attempts to map keywords to market conditions, the idea being to help predict market trends based on external events. Although such software is in its nascent stage, this could add a whole other layer of complexity to trading models.

The fact that so much trading — the majority, in fact — is performed algorithmically suggests that the market is no longer balanced between investors and speculators. And since the speculation component is being propelled by superfast computers, the market has become increasingly volatile and unpredictable. Even before and after the May 2010 flash crash, there have been a number of examples of unexplained price fluctuations.

The University of Pennsylvania’s Kearns suggests that we should to build a ginormous stock market simulator in order to provide some much-needed science for our market structures. In a recent Reuters blog by Salmon, Kearns is quoted about this at length. Although, the professor doesn’t see a simulator as a magic bullet, in his estimation it’s certainly the place to start.

Given the importance of the stock market to the economy, its increasing susceptibility to damaging volatility, and the lack of our understanding of current system, a simulator project seems like a no-brainer. Sounds like a nice little science project for the SEC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Nvidia Shares Recipe to Accelerate AI Cloud Adoption

May 29, 2017

In March, Nvidia revealed blueprints for a new open source Tesla GPU-based accelerator – HGX-1 – developed for clouds with Microsoft under its Project Olym Read more…

By Tiffany Trader

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This