Algorithms Engulf Wall Street

By Michael Feldman

January 19, 2011

Algorithmic trading is getting another cycle of press scrutiny, thanks mainly to a very well-researched article in Wired by Reuters financial blogger Felix Salmon and Ars Technica writer Jon Stokes. In it, they outline how pervasive these high-tech algorithms have become to the everyday running of financial trading. And the problem is no one knows how this software drives the market behavior — not the investors, not the traders, and not even the people who run Wall Street.

The motivation for all this high-tech trading is, of course, money. And in this case, he who develops the fastest system usually wins. This often comes down to placing the trading servers in the same room as the stock exchange servers to get that millisecond edge on executing transactions. The code too is designed for maximum speed, being constantly tweaked to squeeze the last ounce of performance from the underlying computer chips. Appro recently launched a server based on overclocked Intel “Westmere” CPUs, to give high frequency traders that extra speed boost. But all that digitally enhanced speed means it’s that much harder for humans to control.

That’s partly because that computer-generated bids can be executed so quickly (10,000 bids per second for a single stock) and in such a complex manner that humans cannot comprehend the ramifications. The feedback loops become intertwined, such that the entire trading system exhibits emergent behavior, untraceable to any particular piece of code.

In a recent interview on NPR’s Fresh Air program, Salmon declared. “The man danger about algorithmic trading is that we simply don’t understand it.” He says although the individual algorithms are controlled, and presumably understood, by their masters, the interactions between them are not.

In researching his article, Salmon talked with Michael Kearns, a CS Prof at the University of Pennsylvania, who has developed algorithms for various Wall Street firms. Kearns told him that the financial markets have become what he called an “automated adaptive dynamical system with feedback.” That may sound very cool, but according to Kearns there is no science he’s aware of that is able to understand such a system.

It should come as no surprise that occasionally such a system would run the financial markets into a ditch. That happened last May, with the so-called flash crash, when the Dow Jones Industrial Average plummeted 900 points in a matter of minutes — before regaining most of its value. The cause was traced to a relatively obscure mutual fund company that decided to make a very large trade in a very short amount of time (about 20 minutes). The algorithms monitoring the market interpreted this as a panic and came to the same decision all at once: sell. The reason the mutual fund company decided to dump the shares in the first place was to hedge against the possibility of a future stock market drop. Talk about self-fulfilling prophesies.

In the wake of the flash crash, the Securities and Exchange Commission (SEC) announced some measures intended to prevent a reoccurrence. These include “circuit breakers” procedures, such as automatically halting trading when a stocks share price fluctuates by more than 10 percent in 5 minutes. The SEC is also considering other measures like limiting the size and speed of trades and requiring a complete audit trail of all transactions.

But Salmon considers those rather crude remedies for such a tightly wound system. The flash crash event was actually a rather simple example of what could go wrong. The interactions between all the analytic software inhabiting Wall Street datacenters is much more complex. For example, unlike that mutual fund company that executed the large trade all at once, algorithmic trading software tries to hide a big buy or sell events with a series of smaller transactions so as not to tip their hand.

Meanwhile, other algorithms are simultaneously monitoring the activity to discern the larger patterns that the other codes are trying to hide. In some cases, even more devious codes will purposely initiate transactions with no intention of executing them in order to confuse their rival software. It’s very much algorithmic warfare, with no real thought given to collateral damage.

The quantitative analysts themselves have become somewhat innocent bystanders. The Wired article describes a typical quant shop, in this case Berkeley-based Voleon Capital Management, that specializes in statistical arbitrage. The idea is to process mounds of financial data, looking for patterns that would point to an profitable arbitrage opportunity. But the quants have no knowledge of the underlying fundamentals of the assets; they are simply looking for patterns. To them, it’s just a pile of bits unrelated to any larger reality.

The software is becoming more sophisticated too. Salmon documents a recently launched service, called Dow Jones Lexicon, that mines the text in financial news stories and attempts to map keywords to market conditions, the idea being to help predict market trends based on external events. Although such software is in its nascent stage, this could add a whole other layer of complexity to trading models.

The fact that so much trading — the majority, in fact — is performed algorithmically suggests that the market is no longer balanced between investors and speculators. And since the speculation component is being propelled by superfast computers, the market has become increasingly volatile and unpredictable. Even before and after the May 2010 flash crash, there have been a number of examples of unexplained price fluctuations.

The University of Pennsylvania’s Kearns suggests that we should to build a ginormous stock market simulator in order to provide some much-needed science for our market structures. In a recent Reuters blog by Salmon, Kearns is quoted about this at length. Although, the professor doesn’t see a simulator as a magic bullet, in his estimation it’s certainly the place to start.

Given the importance of the stock market to the economy, its increasing susceptibility to damaging volatility, and the lack of our understanding of current system, a simulator project seems like a no-brainer. Sounds like a nice little science project for the SEC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the most experienced cluster administrators. Maintaining a balan Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This