Algorithms Engulf Wall Street

By Michael Feldman

January 19, 2011

Algorithmic trading is getting another cycle of press scrutiny, thanks mainly to a very well-researched article in Wired by Reuters financial blogger Felix Salmon and Ars Technica writer Jon Stokes. In it, they outline how pervasive these high-tech algorithms have become to the everyday running of financial trading. And the problem is no one knows how this software drives the market behavior — not the investors, not the traders, and not even the people who run Wall Street.

The motivation for all this high-tech trading is, of course, money. And in this case, he who develops the fastest system usually wins. This often comes down to placing the trading servers in the same room as the stock exchange servers to get that millisecond edge on executing transactions. The code too is designed for maximum speed, being constantly tweaked to squeeze the last ounce of performance from the underlying computer chips. Appro recently launched a server based on overclocked Intel “Westmere” CPUs, to give high frequency traders that extra speed boost. But all that digitally enhanced speed means it’s that much harder for humans to control.

That’s partly because that computer-generated bids can be executed so quickly (10,000 bids per second for a single stock) and in such a complex manner that humans cannot comprehend the ramifications. The feedback loops become intertwined, such that the entire trading system exhibits emergent behavior, untraceable to any particular piece of code.

In a recent interview on NPR’s Fresh Air program, Salmon declared. “The man danger about algorithmic trading is that we simply don’t understand it.” He says although the individual algorithms are controlled, and presumably understood, by their masters, the interactions between them are not.

In researching his article, Salmon talked with Michael Kearns, a CS Prof at the University of Pennsylvania, who has developed algorithms for various Wall Street firms. Kearns told him that the financial markets have become what he called an “automated adaptive dynamical system with feedback.” That may sound very cool, but according to Kearns there is no science he’s aware of that is able to understand such a system.

It should come as no surprise that occasionally such a system would run the financial markets into a ditch. That happened last May, with the so-called flash crash, when the Dow Jones Industrial Average plummeted 900 points in a matter of minutes — before regaining most of its value. The cause was traced to a relatively obscure mutual fund company that decided to make a very large trade in a very short amount of time (about 20 minutes). The algorithms monitoring the market interpreted this as a panic and came to the same decision all at once: sell. The reason the mutual fund company decided to dump the shares in the first place was to hedge against the possibility of a future stock market drop. Talk about self-fulfilling prophesies.

In the wake of the flash crash, the Securities and Exchange Commission (SEC) announced some measures intended to prevent a reoccurrence. These include “circuit breakers” procedures, such as automatically halting trading when a stocks share price fluctuates by more than 10 percent in 5 minutes. The SEC is also considering other measures like limiting the size and speed of trades and requiring a complete audit trail of all transactions.

But Salmon considers those rather crude remedies for such a tightly wound system. The flash crash event was actually a rather simple example of what could go wrong. The interactions between all the analytic software inhabiting Wall Street datacenters is much more complex. For example, unlike that mutual fund company that executed the large trade all at once, algorithmic trading software tries to hide a big buy or sell events with a series of smaller transactions so as not to tip their hand.

Meanwhile, other algorithms are simultaneously monitoring the activity to discern the larger patterns that the other codes are trying to hide. In some cases, even more devious codes will purposely initiate transactions with no intention of executing them in order to confuse their rival software. It’s very much algorithmic warfare, with no real thought given to collateral damage.

The quantitative analysts themselves have become somewhat innocent bystanders. The Wired article describes a typical quant shop, in this case Berkeley-based Voleon Capital Management, that specializes in statistical arbitrage. The idea is to process mounds of financial data, looking for patterns that would point to an profitable arbitrage opportunity. But the quants have no knowledge of the underlying fundamentals of the assets; they are simply looking for patterns. To them, it’s just a pile of bits unrelated to any larger reality.

The software is becoming more sophisticated too. Salmon documents a recently launched service, called Dow Jones Lexicon, that mines the text in financial news stories and attempts to map keywords to market conditions, the idea being to help predict market trends based on external events. Although such software is in its nascent stage, this could add a whole other layer of complexity to trading models.

The fact that so much trading — the majority, in fact — is performed algorithmically suggests that the market is no longer balanced between investors and speculators. And since the speculation component is being propelled by superfast computers, the market has become increasingly volatile and unpredictable. Even before and after the May 2010 flash crash, there have been a number of examples of unexplained price fluctuations.

The University of Pennsylvania’s Kearns suggests that we should to build a ginormous stock market simulator in order to provide some much-needed science for our market structures. In a recent Reuters blog by Salmon, Kearns is quoted about this at length. Although, the professor doesn’t see a simulator as a magic bullet, in his estimation it’s certainly the place to start.

Given the importance of the stock market to the economy, its increasing susceptibility to damaging volatility, and the lack of our understanding of current system, a simulator project seems like a no-brainer. Sounds like a nice little science project for the SEC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This