A Case for PCI Express as a High-Performance Cluster Interconnect

By Vijay Meduri

January 24, 2011

In high-speed computing (HPC), there are a number of significant benefits to simplifying the processor interconnect in rack- and chassis-based servers by designing in PCI Express (PCIe). The PCI-SIG, the group responsible for the conventional PCI and the much-higher-performance PCIe standards, has released three generations of PCIe specifications over the last eight years and is fully expected to continue this progression in the future with even newer generations, from which HPC systems will continue to see newer features, faster data throughput and improved reliability.

The latest PCIe specification, Gen 3, runs at 8Gbps per serial lane, enabling a 48-lane switch to handle a whopping 96 GBytes/sec. of full duplex peer to peer traffic. Due to the widespread usage of PCI and PCIe in computing, communications and industrial applications, this interconnect technology’s ecosystem is widely deployed and its cost efficiencies as a fabric are enormous. The PCIe interconnect, in each of its generations, offers a clean, high-performance interconnect with low-latency and substantial savings in terms of cost and power. The savings are due to its ability to eliminate multiple layers of expensive switches and bridges that previously were needed to blend various standards. This article explains the key features of a PCIe fabric that now make clusters, expansion boxes and shared-I/O applications relatively easy to develop and deploy.

Figure 1 illustrates a typical topology of building out a server cluster today, in which, while the form factors may change, the basic configuration follows a similar pattern. Given the widespread availability of open-source software and off-the-shelf hardware, companies have successfully built large topologies for their internal cloud infrastructure using this architecture.


Figure 1: Typical Data Center I/O interconnect

Figure 2 illustrates a server cluster built using a native PCIe fabric. As is evident, the usage of numerous adapters and controllers is significantly reduced and this results in a tremendous reduction in power and cost of the overall platform, while delivering better performance in terms of lower latency and higher throughput.


Figure 2: PCI Express-based Server Cluster

Key Features of a PCI Express Fabric

Bandwidth and performance

The width of a PCIe port can range from one to 16 lanes. The 16-lane port configurations are primarily used in graphic applications, while the one-lane configurations are used in USB, wireless and other bridge applications. On a 16-lane port with each lane operating at Gen 3’s 8Gbps, a design can effectively achieve a data transfer rate of 15 GBytes/second and with a cut-through latency on the order of about 120ns.

Non-transparency

In a typical system, the PCIe device hierarchy is owned by a single host, and the operating system/BIOS allocates and controls all the memory resources to the devices within the system. If two PCIe hierarchies are connected, there is conflict and the system resources are allocated over one other. To avoid this problem, the system will use non-transparency, allowing address isolation between the two hosts. Each host allocates resources in the normal manner and when it discovers the PCI device with the NT port, it allocates resources as it would with any end-point based on the BAR memory setup. This address window can be used to tunnel and communicate between various hosts in the system. There is a mechanism built into the device that translates the address window on the receiving host system to a non-overlapping address space.

DMA

DMA engines are now available on PCIe switches, such as those from PLX Technology, which are quite versatile and have the standard descriptor fetch -> move data -> descriptor fetch approach with a lot of programmable pre-fetch options that allow efficient data movement directly between the memory of one host to that of another. The DMA engine in a PCIe switch serves a function similar to that of a DMA resource on a network or host-bus card, in that it moves data to and from the main memory. Figure 3 illustrates how an integrated DMA engine is used to move data, thus avoiding the need for using CPU resources in large file transfers. For low-latency messaging, the CPU can be used to directly use programmable IOs to write into the system memory of a destination host using an address window over NT.


Figure 3: DMA engine embedded in a PCIe Fabric enables efficient data transfer

Spread spectrum isolation

Most systems turn on spread spectrum on the clock sources to reduce electro-magnetic interference on certain frequencies. All PCIe devices are required support spread spectrum clock sources, as long as the all the connected PCIe devices reference the same clock source the system will work. However, with PCIe cluster topologies, multiple domains need to support different spread-spectrum clocks and, hence, the need for spread-spectrum isolation. This feature allows two PCIe ports on different spread-spectrum domains to be connected through an isolation port.

Data integrity

The PCIe specification provides extensive logging and error reporting mechanisms. The two key data-integrity features are link cyclic redundancy check (LCRC) and end-to-end cyclic redundancy check (ECRC), with LCRC protecting link-to-link packet protection and ECRC providing end-to-end CRC protection. For inter-processor communication, ECRC augmented with protocol-level support provides excellent data protection. These inherent features, coupled with the implementation-specific robustness in the data path, provide excellent data integrity in a PCIe fabric. Data protection has been fundamental to the protocol, given ever-increasing requirement in computing, storage and chip set architectures.

Lossless fabric

A PCIe link between two devices guarantees delivery of packets with a rigorous ACK/NAK acknowledgment protocol. This eliminates the need for higher-level protocol per packet acknowledgement mechanism. The protocol does not allow for any device to drop a packet in transmission without notification. The situations where this could occur are primarily silicon/hardware failures and with the right Error Correction and Parity protection schemes the probability of such occurrence is statistically insignificant.

Congestion management and scaling

There is no inherent fabric-level congestion management mechanism built into the protocol, hence the topologies where PCIe shines is in the area of small- to medium-scale clusters of up to 200 nodes. For scaling beyond these numbers of nodes, a shared I/O Ethernet controller or converged adapter could be used to connect between the mini-PCIe clusters over a converged Ethernet fabric, as shown in Figure 4. Within the PCIe cluster, congestion management could be achieved by using simple flow control schemes among the nodes.


Figure 4 : Scaling a PCIe Fabric

Shared I/O

The basic concept in shared I/O is that the same I/O device is virtually shared between the many virtual managers (VMs) on a given host. This allows more of the software overhead that is currently being done in the hypervisor to be offloaded with native support onto the hardware. The PCI-SIG workgroup involved in this has defined both the single-root IO virtualization (SR-IOV) and multi-root IO virtualization (MR-IOV) requirements in the end-points, switches and root complexes. There is more traction in the industry on SR-IOV-compatible end-points than on MR-IOV. It is now possible to share I/O controllers among multiple hosts on a PCIe fabric by several different schemes.

Software

PCIe devices have been designed such that their software discovery is backward-compatible with the legacy PCI configuration model — an approach that’s been critical to the success of the interconnect technology. This software compatibility works well within the framework on a single host, however for multiple hosts there is a layer of software needed to enable communication between the hosts. Given that many clustering applications are already available for standard APIs from Ethernet and InfiniBand, there is active, ongoing development to build similar software stacks for PCIe that leverage the existing API thus reusing existing infrastructure.

Power and cost reduction using PCIe

With the elimination of protocol adapters at every node in a cluster, a reduction in I/O interconnect power consumption of up to 70 percent can be achieved. Due to the widespread usage and ubiquity of PCIe, the cost of switches, on a per-lane basis, is significantly lower than comparable performance-level switches. The protocol provides excellent power management features that allows for system software to dynamically shut down and bring up lanes by monitoring the usage and traffic flows. Additionally, active state power management (ASPM) allows for the hardware to automatically shut down the lanes when there is no traffic.

Flexibility and Interoperability

Each of the ports on a PCIe fabric can automatically negotiate to x16, x8, x4 or x1 widths based on a protocol handshake. In addition an x16 port can be configured as 2 x8s or 4 x4s which enables the systems designer complete flexibility on how he allocates his resources and can customize based on usage. Interesting techniques for acceleration and storage open up on a PCIe fabric since the graphics adapters and flash storage cards have PCIe interfaces that can directly connect to the fabric.

In summary, there are well over 800 vendors developing various kinds of solutions around the PCIe interconnect standard’s three generations. This has led to broad, worldwide adoption of the protocol and to a large percentage of the CPUs available in the market now having PCIe ports native to the processor. Given the low-cost emphasis on PCIe since its initial launch, the total cost of building out a PCIe fabric is an order of magnitude lower than comparable high-performance interconnects. As this I/O standard has evolved and become ubiquitous, the natural progression has been to use the fabric for expansion boxes and inter-processor communication. Dual-host solutions using non transparency have been widely used in storage boxes since 2005 but now the industry is pushing the fabric to expand to larger-scale clusters. Both hardware and software enhancements now make this possible to build reasonably sized clusters with off-the-shelf components. With the evolution of the converged network and storage adapters, there is an increased emphasis to pack more functionality into them, which pushes against the power and cost thresholds when every computing node needs a heavy adapter. A simple solution would be to extend the existing PCIe interconnect on the computing nodes to address the inter-processor communication.

Vijay Meduri is vice president of engineering for PCI Express switching at PLX Technology, Sunnyvale, Calif. He can be reached at vmeduri@plxtech.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This