Cray Pushes XMT Supercomputer Into the Limelight

By Michael Feldman

January 26, 2011

When announced in 2006, the Cray XMT supercomputer attracted little attention. The machine was originally targeted for high-end data mining and analysis for a particular set of government clients in the intelligence community. While the feds have given the XMT support over the past five years, Cray is now looking to move these machines into the commercial sphere. And with the next generation XMT-2 on the horizon, the company is gearing up to accelerate that strategy in 2011.

From the company-wide standpoint, XMT is to big data-intensive applications what the Cray XT and XE product lines are to big science. The machine is made to deal with really huge datasets — we’re talking terabytes — whether they be technical or non-technical in nature. But the XMT is actually designed for a specific flavor of data-intensive application: those that must deal with irregularly structured data at scale — what are sometimes referred to as graph analytics problems.

These can be broken down further into two general categories. The first is the finding-the-needle-in-a-haystack problem, which involves locating a particular piece of information inside a huge dataset. The other is the connecting-the-dots problem, where you want to establish complex relationships in a cloud of seemingly unrelated data.

The most natural computational model for these types of applications is one in which thousands of computational threads inhabit a large global memory space. To further maximize performance, fine-grained thread synchronization is required. Broadly speaking, this model is not supported by more mundane cluster computing platforms as you might find with a traditional Oracle or Netezza database appliance. Unless the application can be partitioned naturally across cluster nodes and data access patterns are fairly regular, performance will suffer.

The encouraging news for XMT proponents is that over the last several years large-scale analytics applications using unstructured data have become much more mainstream. Areas such as intelligence/surveillance, protein folding, genomics, credit fraud detection, semantic searching, social networks analysis, computational geometry, scene recognition, and energy distribution all rely on large collections of unstructured data. As such the XMT is suitable for many high-end analytics applications in business intelligence, scientific research and Web search.

It’s no coincidence that companies like Google, Facebook, and Amazon that use data mining are attracting the same scrutiny from civil libertarians that used to be reserved for the three-letter government agencies. They are now both running essentially the same applications. Businesses and governments alike want to sift through enormous databases in order to extract real-time intelligence, and that is nowhere more apparent than in the rise of the semantic Web.

In fact, social network analysis is one of the big application areas Cray is targeting for its XMT product — that according to Shoaib Mufti, Cray’s director of Knowledge Management. Mufti says search engines are moving toward more complex analysis, especially in the area of natural language processing. The goal here is to interpret the search input more precisely in order to deliver more accurate results. All of this processing has to be done interactively, which puts an enormous strain on conventional hardware.

For example, instead of delivering 1,000 pages of search results to sift through, a semantic search engine will only deliver a handful of the most relevant sites, or perhaps even just one. This is not mainstream technology today, but with the spread of mobile platforms (whose natural interface just happens to be spoken input), there will be an enormous demand for semantic searching. “We see a huge potential for XMT in providing value there,” says Mufti.

There’s also a big demand for graph type problems in the financial industry, such as the aforementioned area of fraud detection. In this case banks need to search through thousands or even millions of credit transactions looking for evidence of bogus activity. The volume of transactions and the need for real-time response is pushing this application beyond the bounds of conventional computing systems.

Conventional the XMT is not. The supercomputer has some stand-out features not found in other highly-parallel platforms. The most obvious is that it marries an extreme multithreading CPU, Cray’s custom Threadstorm processor, with a high-capacity shared memory architecture. Many shared memory systems, such as SGI’s Altix UV, are based on conventional x86 technology. Although a UV machine can offer up to 64 threads per node (with four 8-core CPUs), one Threadstorm chip supports 128 threads. Better yet, each Threadstorm draws just 30 watts, or about a third that of a high-end x86 CPU. In addition, the XMT supports fine-grained synchronization in the hardware, in order to hide latencies across the threads.

The underlying architecture is based on the Cray’s mainstream XT platform, right down to the SeaStar2 interconnect and the AMD socket that Cray uses for the Threadstorm processors. In this way the company was able to reuse existing componentry, while at the same time providing a highly scalable platform for the Threadstorm technology. Today the system tops out at 8,024 processors, which can aggregate more than a million threads, and 64 terabytes of shared memory, the highest capacity of any such machine, says Mufti.

According to him, an XMT supercomputer can deliver 10 to 100 times better performance than conventional architectures on problems that exhibit irregular data access patterns. Making comparisons is somewhat problematic, though. There is as yet no widely accepted benchmark for graph problems. The new Graph 500 organization wants to fill that void, but that benchmark is still evolving. For the first Graph 500 results announced at SC10 last November, a 128-node XMT machine came in third place, beat out only by two much larger systems: an IBM Blue Gene/P (using 8,192 nodes) and a Cray XT4 (using 544 nodes).

Despite its computational muscle and its five-year history, the XMT business is still very much a work in progress. Mufti’s Knowledge Management team, which oversees the XMT product, is run out of Cray’s Custom Engineering division, a group that is focused on developing new business opportunities. Cray doesn’t break out how much revenue is generated from XMT sales, and you’d be hard-pressed to find a dollar figure associated with any current deployment at government agencies or research labs. Nevertheless, the company must be gleaning enough sales to warrant on-going development.

Sometime later this year, Cray intends to launch XMT-2, the first system upgrade in five years. As it targets the broader market, Cray is also looking to make the machine easier to use. A lot of this will come via partnerships with software firms like Cambridge Semantics and Clark & Parsia, LLC, who are developing semantics tools and middleware for large-scale analytics.

For the XMT-2 system itself, Cray is focusing on scalability and TCO. Although not ready to release details, according to Mufti the next generation has scaled “significantly.” This was done to accommodate the ever-growing problem size, especially in regard to database memory requirements. While this is yet to be confimed, it’s logical to assume the new system will move up to the latest Gemini interconnect used in the XT and XE lines in order to take advantage of the increased performance. The next-generation Threadstorm processors will also likely benefit from smaller transistor geometries, allowing for better performance-per watt, more threads, or a little of both. Overall, says Mufti, XMT-2 will be denser as well as more more energy efficient, and the underlying technology “will be taken to the next level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This