Cray Pushes XMT Supercomputer Into the Limelight

By Michael Feldman

January 26, 2011

When announced in 2006, the Cray XMT supercomputer attracted little attention. The machine was originally targeted for high-end data mining and analysis for a particular set of government clients in the intelligence community. While the feds have given the XMT support over the past five years, Cray is now looking to move these machines into the commercial sphere. And with the next generation XMT-2 on the horizon, the company is gearing up to accelerate that strategy in 2011.

From the company-wide standpoint, XMT is to big data-intensive applications what the Cray XT and XE product lines are to big science. The machine is made to deal with really huge datasets — we’re talking terabytes — whether they be technical or non-technical in nature. But the XMT is actually designed for a specific flavor of data-intensive application: those that must deal with irregularly structured data at scale — what are sometimes referred to as graph analytics problems.

These can be broken down further into two general categories. The first is the finding-the-needle-in-a-haystack problem, which involves locating a particular piece of information inside a huge dataset. The other is the connecting-the-dots problem, where you want to establish complex relationships in a cloud of seemingly unrelated data.

The most natural computational model for these types of applications is one in which thousands of computational threads inhabit a large global memory space. To further maximize performance, fine-grained thread synchronization is required. Broadly speaking, this model is not supported by more mundane cluster computing platforms as you might find with a traditional Oracle or Netezza database appliance. Unless the application can be partitioned naturally across cluster nodes and data access patterns are fairly regular, performance will suffer.

The encouraging news for XMT proponents is that over the last several years large-scale analytics applications using unstructured data have become much more mainstream. Areas such as intelligence/surveillance, protein folding, genomics, credit fraud detection, semantic searching, social networks analysis, computational geometry, scene recognition, and energy distribution all rely on large collections of unstructured data. As such the XMT is suitable for many high-end analytics applications in business intelligence, scientific research and Web search.

It’s no coincidence that companies like Google, Facebook, and Amazon that use data mining are attracting the same scrutiny from civil libertarians that used to be reserved for the three-letter government agencies. They are now both running essentially the same applications. Businesses and governments alike want to sift through enormous databases in order to extract real-time intelligence, and that is nowhere more apparent than in the rise of the semantic Web.

In fact, social network analysis is one of the big application areas Cray is targeting for its XMT product — that according to Shoaib Mufti, Cray’s director of Knowledge Management. Mufti says search engines are moving toward more complex analysis, especially in the area of natural language processing. The goal here is to interpret the search input more precisely in order to deliver more accurate results. All of this processing has to be done interactively, which puts an enormous strain on conventional hardware.

For example, instead of delivering 1,000 pages of search results to sift through, a semantic search engine will only deliver a handful of the most relevant sites, or perhaps even just one. This is not mainstream technology today, but with the spread of mobile platforms (whose natural interface just happens to be spoken input), there will be an enormous demand for semantic searching. “We see a huge potential for XMT in providing value there,” says Mufti.

There’s also a big demand for graph type problems in the financial industry, such as the aforementioned area of fraud detection. In this case banks need to search through thousands or even millions of credit transactions looking for evidence of bogus activity. The volume of transactions and the need for real-time response is pushing this application beyond the bounds of conventional computing systems.

Conventional the XMT is not. The supercomputer has some stand-out features not found in other highly-parallel platforms. The most obvious is that it marries an extreme multithreading CPU, Cray’s custom Threadstorm processor, with a high-capacity shared memory architecture. Many shared memory systems, such as SGI’s Altix UV, are based on conventional x86 technology. Although a UV machine can offer up to 64 threads per node (with four 8-core CPUs), one Threadstorm chip supports 128 threads. Better yet, each Threadstorm draws just 30 watts, or about a third that of a high-end x86 CPU. In addition, the XMT supports fine-grained synchronization in the hardware, in order to hide latencies across the threads.

The underlying architecture is based on the Cray’s mainstream XT platform, right down to the SeaStar2 interconnect and the AMD socket that Cray uses for the Threadstorm processors. In this way the company was able to reuse existing componentry, while at the same time providing a highly scalable platform for the Threadstorm technology. Today the system tops out at 8,024 processors, which can aggregate more than a million threads, and 64 terabytes of shared memory, the highest capacity of any such machine, says Mufti.

According to him, an XMT supercomputer can deliver 10 to 100 times better performance than conventional architectures on problems that exhibit irregular data access patterns. Making comparisons is somewhat problematic, though. There is as yet no widely accepted benchmark for graph problems. The new Graph 500 organization wants to fill that void, but that benchmark is still evolving. For the first Graph 500 results announced at SC10 last November, a 128-node XMT machine came in third place, beat out only by two much larger systems: an IBM Blue Gene/P (using 8,192 nodes) and a Cray XT4 (using 544 nodes).

Despite its computational muscle and its five-year history, the XMT business is still very much a work in progress. Mufti’s Knowledge Management team, which oversees the XMT product, is run out of Cray’s Custom Engineering division, a group that is focused on developing new business opportunities. Cray doesn’t break out how much revenue is generated from XMT sales, and you’d be hard-pressed to find a dollar figure associated with any current deployment at government agencies or research labs. Nevertheless, the company must be gleaning enough sales to warrant on-going development.

Sometime later this year, Cray intends to launch XMT-2, the first system upgrade in five years. As it targets the broader market, Cray is also looking to make the machine easier to use. A lot of this will come via partnerships with software firms like Cambridge Semantics and Clark & Parsia, LLC, who are developing semantics tools and middleware for large-scale analytics.

For the XMT-2 system itself, Cray is focusing on scalability and TCO. Although not ready to release details, according to Mufti the next generation has scaled “significantly.” This was done to accommodate the ever-growing problem size, especially in regard to database memory requirements. While this is yet to be confimed, it’s logical to assume the new system will move up to the latest Gemini interconnect used in the XT and XE lines in order to take advantage of the increased performance. The next-generation Threadstorm processors will also likely benefit from smaller transistor geometries, allowing for better performance-per watt, more threads, or a little of both. Overall, says Mufti, XMT-2 will be denser as well as more more energy efficient, and the underlying technology “will be taken to the next level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire