Cray Pushes XMT Supercomputer Into the Limelight

By Michael Feldman

January 26, 2011

When announced in 2006, the Cray XMT supercomputer attracted little attention. The machine was originally targeted for high-end data mining and analysis for a particular set of government clients in the intelligence community. While the feds have given the XMT support over the past five years, Cray is now looking to move these machines into the commercial sphere. And with the next generation XMT-2 on the horizon, the company is gearing up to accelerate that strategy in 2011.

From the company-wide standpoint, XMT is to big data-intensive applications what the Cray XT and XE product lines are to big science. The machine is made to deal with really huge datasets — we’re talking terabytes — whether they be technical or non-technical in nature. But the XMT is actually designed for a specific flavor of data-intensive application: those that must deal with irregularly structured data at scale — what are sometimes referred to as graph analytics problems.

These can be broken down further into two general categories. The first is the finding-the-needle-in-a-haystack problem, which involves locating a particular piece of information inside a huge dataset. The other is the connecting-the-dots problem, where you want to establish complex relationships in a cloud of seemingly unrelated data.

The most natural computational model for these types of applications is one in which thousands of computational threads inhabit a large global memory space. To further maximize performance, fine-grained thread synchronization is required. Broadly speaking, this model is not supported by more mundane cluster computing platforms as you might find with a traditional Oracle or Netezza database appliance. Unless the application can be partitioned naturally across cluster nodes and data access patterns are fairly regular, performance will suffer.

The encouraging news for XMT proponents is that over the last several years large-scale analytics applications using unstructured data have become much more mainstream. Areas such as intelligence/surveillance, protein folding, genomics, credit fraud detection, semantic searching, social networks analysis, computational geometry, scene recognition, and energy distribution all rely on large collections of unstructured data. As such the XMT is suitable for many high-end analytics applications in business intelligence, scientific research and Web search.

It’s no coincidence that companies like Google, Facebook, and Amazon that use data mining are attracting the same scrutiny from civil libertarians that used to be reserved for the three-letter government agencies. They are now both running essentially the same applications. Businesses and governments alike want to sift through enormous databases in order to extract real-time intelligence, and that is nowhere more apparent than in the rise of the semantic Web.

In fact, social network analysis is one of the big application areas Cray is targeting for its XMT product — that according to Shoaib Mufti, Cray’s director of Knowledge Management. Mufti says search engines are moving toward more complex analysis, especially in the area of natural language processing. The goal here is to interpret the search input more precisely in order to deliver more accurate results. All of this processing has to be done interactively, which puts an enormous strain on conventional hardware.

For example, instead of delivering 1,000 pages of search results to sift through, a semantic search engine will only deliver a handful of the most relevant sites, or perhaps even just one. This is not mainstream technology today, but with the spread of mobile platforms (whose natural interface just happens to be spoken input), there will be an enormous demand for semantic searching. “We see a huge potential for XMT in providing value there,” says Mufti.

There’s also a big demand for graph type problems in the financial industry, such as the aforementioned area of fraud detection. In this case banks need to search through thousands or even millions of credit transactions looking for evidence of bogus activity. The volume of transactions and the need for real-time response is pushing this application beyond the bounds of conventional computing systems.

Conventional the XMT is not. The supercomputer has some stand-out features not found in other highly-parallel platforms. The most obvious is that it marries an extreme multithreading CPU, Cray’s custom Threadstorm processor, with a high-capacity shared memory architecture. Many shared memory systems, such as SGI’s Altix UV, are based on conventional x86 technology. Although a UV machine can offer up to 64 threads per node (with four 8-core CPUs), one Threadstorm chip supports 128 threads. Better yet, each Threadstorm draws just 30 watts, or about a third that of a high-end x86 CPU. In addition, the XMT supports fine-grained synchronization in the hardware, in order to hide latencies across the threads.

The underlying architecture is based on the Cray’s mainstream XT platform, right down to the SeaStar2 interconnect and the AMD socket that Cray uses for the Threadstorm processors. In this way the company was able to reuse existing componentry, while at the same time providing a highly scalable platform for the Threadstorm technology. Today the system tops out at 8,024 processors, which can aggregate more than a million threads, and 64 terabytes of shared memory, the highest capacity of any such machine, says Mufti.

According to him, an XMT supercomputer can deliver 10 to 100 times better performance than conventional architectures on problems that exhibit irregular data access patterns. Making comparisons is somewhat problematic, though. There is as yet no widely accepted benchmark for graph problems. The new Graph 500 organization wants to fill that void, but that benchmark is still evolving. For the first Graph 500 results announced at SC10 last November, a 128-node XMT machine came in third place, beat out only by two much larger systems: an IBM Blue Gene/P (using 8,192 nodes) and a Cray XT4 (using 544 nodes).

Despite its computational muscle and its five-year history, the XMT business is still very much a work in progress. Mufti’s Knowledge Management team, which oversees the XMT product, is run out of Cray’s Custom Engineering division, a group that is focused on developing new business opportunities. Cray doesn’t break out how much revenue is generated from XMT sales, and you’d be hard-pressed to find a dollar figure associated with any current deployment at government agencies or research labs. Nevertheless, the company must be gleaning enough sales to warrant on-going development.

Sometime later this year, Cray intends to launch XMT-2, the first system upgrade in five years. As it targets the broader market, Cray is also looking to make the machine easier to use. A lot of this will come via partnerships with software firms like Cambridge Semantics and Clark & Parsia, LLC, who are developing semantics tools and middleware for large-scale analytics.

For the XMT-2 system itself, Cray is focusing on scalability and TCO. Although not ready to release details, according to Mufti the next generation has scaled “significantly.” This was done to accommodate the ever-growing problem size, especially in regard to database memory requirements. While this is yet to be confimed, it’s logical to assume the new system will move up to the latest Gemini interconnect used in the XT and XE lines in order to take advantage of the increased performance. The next-generation Threadstorm processors will also likely benefit from smaller transistor geometries, allowing for better performance-per watt, more threads, or a little of both. Overall, says Mufti, XMT-2 will be denser as well as more more energy efficient, and the underlying technology “will be taken to the next level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This