Cray Pushes XMT Supercomputer Into the Limelight

By Michael Feldman

January 26, 2011

When announced in 2006, the Cray XMT supercomputer attracted little attention. The machine was originally targeted for high-end data mining and analysis for a particular set of government clients in the intelligence community. While the feds have given the XMT support over the past five years, Cray is now looking to move these machines into the commercial sphere. And with the next generation XMT-2 on the horizon, the company is gearing up to accelerate that strategy in 2011.

From the company-wide standpoint, XMT is to big data-intensive applications what the Cray XT and XE product lines are to big science. The machine is made to deal with really huge datasets — we’re talking terabytes — whether they be technical or non-technical in nature. But the XMT is actually designed for a specific flavor of data-intensive application: those that must deal with irregularly structured data at scale — what are sometimes referred to as graph analytics problems.

These can be broken down further into two general categories. The first is the finding-the-needle-in-a-haystack problem, which involves locating a particular piece of information inside a huge dataset. The other is the connecting-the-dots problem, where you want to establish complex relationships in a cloud of seemingly unrelated data.

The most natural computational model for these types of applications is one in which thousands of computational threads inhabit a large global memory space. To further maximize performance, fine-grained thread synchronization is required. Broadly speaking, this model is not supported by more mundane cluster computing platforms as you might find with a traditional Oracle or Netezza database appliance. Unless the application can be partitioned naturally across cluster nodes and data access patterns are fairly regular, performance will suffer.

The encouraging news for XMT proponents is that over the last several years large-scale analytics applications using unstructured data have become much more mainstream. Areas such as intelligence/surveillance, protein folding, genomics, credit fraud detection, semantic searching, social networks analysis, computational geometry, scene recognition, and energy distribution all rely on large collections of unstructured data. As such the XMT is suitable for many high-end analytics applications in business intelligence, scientific research and Web search.

It’s no coincidence that companies like Google, Facebook, and Amazon that use data mining are attracting the same scrutiny from civil libertarians that used to be reserved for the three-letter government agencies. They are now both running essentially the same applications. Businesses and governments alike want to sift through enormous databases in order to extract real-time intelligence, and that is nowhere more apparent than in the rise of the semantic Web.

In fact, social network analysis is one of the big application areas Cray is targeting for its XMT product — that according to Shoaib Mufti, Cray’s director of Knowledge Management. Mufti says search engines are moving toward more complex analysis, especially in the area of natural language processing. The goal here is to interpret the search input more precisely in order to deliver more accurate results. All of this processing has to be done interactively, which puts an enormous strain on conventional hardware.

For example, instead of delivering 1,000 pages of search results to sift through, a semantic search engine will only deliver a handful of the most relevant sites, or perhaps even just one. This is not mainstream technology today, but with the spread of mobile platforms (whose natural interface just happens to be spoken input), there will be an enormous demand for semantic searching. “We see a huge potential for XMT in providing value there,” says Mufti.

There’s also a big demand for graph type problems in the financial industry, such as the aforementioned area of fraud detection. In this case banks need to search through thousands or even millions of credit transactions looking for evidence of bogus activity. The volume of transactions and the need for real-time response is pushing this application beyond the bounds of conventional computing systems.

Conventional the XMT is not. The supercomputer has some stand-out features not found in other highly-parallel platforms. The most obvious is that it marries an extreme multithreading CPU, Cray’s custom Threadstorm processor, with a high-capacity shared memory architecture. Many shared memory systems, such as SGI’s Altix UV, are based on conventional x86 technology. Although a UV machine can offer up to 64 threads per node (with four 8-core CPUs), one Threadstorm chip supports 128 threads. Better yet, each Threadstorm draws just 30 watts, or about a third that of a high-end x86 CPU. In addition, the XMT supports fine-grained synchronization in the hardware, in order to hide latencies across the threads.

The underlying architecture is based on the Cray’s mainstream XT platform, right down to the SeaStar2 interconnect and the AMD socket that Cray uses for the Threadstorm processors. In this way the company was able to reuse existing componentry, while at the same time providing a highly scalable platform for the Threadstorm technology. Today the system tops out at 8,024 processors, which can aggregate more than a million threads, and 64 terabytes of shared memory, the highest capacity of any such machine, says Mufti.

According to him, an XMT supercomputer can deliver 10 to 100 times better performance than conventional architectures on problems that exhibit irregular data access patterns. Making comparisons is somewhat problematic, though. There is as yet no widely accepted benchmark for graph problems. The new Graph 500 organization wants to fill that void, but that benchmark is still evolving. For the first Graph 500 results announced at SC10 last November, a 128-node XMT machine came in third place, beat out only by two much larger systems: an IBM Blue Gene/P (using 8,192 nodes) and a Cray XT4 (using 544 nodes).

Despite its computational muscle and its five-year history, the XMT business is still very much a work in progress. Mufti’s Knowledge Management team, which oversees the XMT product, is run out of Cray’s Custom Engineering division, a group that is focused on developing new business opportunities. Cray doesn’t break out how much revenue is generated from XMT sales, and you’d be hard-pressed to find a dollar figure associated with any current deployment at government agencies or research labs. Nevertheless, the company must be gleaning enough sales to warrant on-going development.

Sometime later this year, Cray intends to launch XMT-2, the first system upgrade in five years. As it targets the broader market, Cray is also looking to make the machine easier to use. A lot of this will come via partnerships with software firms like Cambridge Semantics and Clark & Parsia, LLC, who are developing semantics tools and middleware for large-scale analytics.

For the XMT-2 system itself, Cray is focusing on scalability and TCO. Although not ready to release details, according to Mufti the next generation has scaled “significantly.” This was done to accommodate the ever-growing problem size, especially in regard to database memory requirements. While this is yet to be confimed, it’s logical to assume the new system will move up to the latest Gemini interconnect used in the XT and XE lines in order to take advantage of the increased performance. The next-generation Threadstorm processors will also likely benefit from smaller transistor geometries, allowing for better performance-per watt, more threads, or a little of both. Overall, says Mufti, XMT-2 will be denser as well as more more energy efficient, and the underlying technology “will be taken to the next level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This