Cray Pushes XMT Supercomputer Into the Limelight

By Michael Feldman

January 26, 2011

When announced in 2006, the Cray XMT supercomputer attracted little attention. The machine was originally targeted for high-end data mining and analysis for a particular set of government clients in the intelligence community. While the feds have given the XMT support over the past five years, Cray is now looking to move these machines into the commercial sphere. And with the next generation XMT-2 on the horizon, the company is gearing up to accelerate that strategy in 2011.

From the company-wide standpoint, XMT is to big data-intensive applications what the Cray XT and XE product lines are to big science. The machine is made to deal with really huge datasets — we’re talking terabytes — whether they be technical or non-technical in nature. But the XMT is actually designed for a specific flavor of data-intensive application: those that must deal with irregularly structured data at scale — what are sometimes referred to as graph analytics problems.

These can be broken down further into two general categories. The first is the finding-the-needle-in-a-haystack problem, which involves locating a particular piece of information inside a huge dataset. The other is the connecting-the-dots problem, where you want to establish complex relationships in a cloud of seemingly unrelated data.

The most natural computational model for these types of applications is one in which thousands of computational threads inhabit a large global memory space. To further maximize performance, fine-grained thread synchronization is required. Broadly speaking, this model is not supported by more mundane cluster computing platforms as you might find with a traditional Oracle or Netezza database appliance. Unless the application can be partitioned naturally across cluster nodes and data access patterns are fairly regular, performance will suffer.

The encouraging news for XMT proponents is that over the last several years large-scale analytics applications using unstructured data have become much more mainstream. Areas such as intelligence/surveillance, protein folding, genomics, credit fraud detection, semantic searching, social networks analysis, computational geometry, scene recognition, and energy distribution all rely on large collections of unstructured data. As such the XMT is suitable for many high-end analytics applications in business intelligence, scientific research and Web search.

It’s no coincidence that companies like Google, Facebook, and Amazon that use data mining are attracting the same scrutiny from civil libertarians that used to be reserved for the three-letter government agencies. They are now both running essentially the same applications. Businesses and governments alike want to sift through enormous databases in order to extract real-time intelligence, and that is nowhere more apparent than in the rise of the semantic Web.

In fact, social network analysis is one of the big application areas Cray is targeting for its XMT product — that according to Shoaib Mufti, Cray’s director of Knowledge Management. Mufti says search engines are moving toward more complex analysis, especially in the area of natural language processing. The goal here is to interpret the search input more precisely in order to deliver more accurate results. All of this processing has to be done interactively, which puts an enormous strain on conventional hardware.

For example, instead of delivering 1,000 pages of search results to sift through, a semantic search engine will only deliver a handful of the most relevant sites, or perhaps even just one. This is not mainstream technology today, but with the spread of mobile platforms (whose natural interface just happens to be spoken input), there will be an enormous demand for semantic searching. “We see a huge potential for XMT in providing value there,” says Mufti.

There’s also a big demand for graph type problems in the financial industry, such as the aforementioned area of fraud detection. In this case banks need to search through thousands or even millions of credit transactions looking for evidence of bogus activity. The volume of transactions and the need for real-time response is pushing this application beyond the bounds of conventional computing systems.

Conventional the XMT is not. The supercomputer has some stand-out features not found in other highly-parallel platforms. The most obvious is that it marries an extreme multithreading CPU, Cray’s custom Threadstorm processor, with a high-capacity shared memory architecture. Many shared memory systems, such as SGI’s Altix UV, are based on conventional x86 technology. Although a UV machine can offer up to 64 threads per node (with four 8-core CPUs), one Threadstorm chip supports 128 threads. Better yet, each Threadstorm draws just 30 watts, or about a third that of a high-end x86 CPU. In addition, the XMT supports fine-grained synchronization in the hardware, in order to hide latencies across the threads.

The underlying architecture is based on the Cray’s mainstream XT platform, right down to the SeaStar2 interconnect and the AMD socket that Cray uses for the Threadstorm processors. In this way the company was able to reuse existing componentry, while at the same time providing a highly scalable platform for the Threadstorm technology. Today the system tops out at 8,024 processors, which can aggregate more than a million threads, and 64 terabytes of shared memory, the highest capacity of any such machine, says Mufti.

According to him, an XMT supercomputer can deliver 10 to 100 times better performance than conventional architectures on problems that exhibit irregular data access patterns. Making comparisons is somewhat problematic, though. There is as yet no widely accepted benchmark for graph problems. The new Graph 500 organization wants to fill that void, but that benchmark is still evolving. For the first Graph 500 results announced at SC10 last November, a 128-node XMT machine came in third place, beat out only by two much larger systems: an IBM Blue Gene/P (using 8,192 nodes) and a Cray XT4 (using 544 nodes).

Despite its computational muscle and its five-year history, the XMT business is still very much a work in progress. Mufti’s Knowledge Management team, which oversees the XMT product, is run out of Cray’s Custom Engineering division, a group that is focused on developing new business opportunities. Cray doesn’t break out how much revenue is generated from XMT sales, and you’d be hard-pressed to find a dollar figure associated with any current deployment at government agencies or research labs. Nevertheless, the company must be gleaning enough sales to warrant on-going development.

Sometime later this year, Cray intends to launch XMT-2, the first system upgrade in five years. As it targets the broader market, Cray is also looking to make the machine easier to use. A lot of this will come via partnerships with software firms like Cambridge Semantics and Clark & Parsia, LLC, who are developing semantics tools and middleware for large-scale analytics.

For the XMT-2 system itself, Cray is focusing on scalability and TCO. Although not ready to release details, according to Mufti the next generation has scaled “significantly.” This was done to accommodate the ever-growing problem size, especially in regard to database memory requirements. While this is yet to be confimed, it’s logical to assume the new system will move up to the latest Gemini interconnect used in the XT and XE lines in order to take advantage of the increased performance. The next-generation Threadstorm processors will also likely benefit from smaller transistor geometries, allowing for better performance-per watt, more threads, or a little of both. Overall, says Mufti, XMT-2 will be denser as well as more more energy efficient, and the underlying technology “will be taken to the next level.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). A Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This