New Architecture Tackles High Speed Network Challenges

By Guangdeng Liao

January 31, 2011

Ethernet continues to be the most widely used network architecture today for its low cost and backward compatibility with the existing Ethernet infrastructure. Driven by increasing networking demands for application such as Internet search, Web hosting, video on demand, and high performance computing, network speed is rapidly migrating to 10 Gigabits per second and beyond. But as network speed increases, it poses a number of great challenges on computer servers.

Recently, researchers at University of California, Riverside have studied I/O challenges from high-speed networks and invented a new architecture to efficiently tackle those challenges. A paper describing the research, “A New Server I/O Architecture for High Speed Networks“, was co-authored by graduate student Guangdeng Liao and professor Laxmi Bhuyan. The paper will be presented February 15 at the IEEE International Symposium on High-Performance Computer Architecture (HPCA) in San Antonio, Texas. What follows is an encapsulation of this work and a description of the new I/O design.

Traditional architectural designs of processors, cache hierarchies and system interconnects focus on CPU and/or memory-intensive applications, and are decoupled from I/O considerations. As a result, they tend to be inefficient for network processing. Network processing over 10 Gigabit Ethernet (10GbE) easily saturates two cores of an Intel Xeon quad-core processor. Assuming ideal scalability over multiple cores, network processing over 40GbE and 100GbE will saturate 8 and 20 cores, respectively. In addition to the processing inefficiency, the increasing network speed also poses a big challenge to network interface card (NIC) designs. DMA descriptor fetches over a long latency PCI Express bus heavily stress the DMA engine in NICs and necessitate larger NIC buffers to temporarily keep packets.

These requirements significantly increase the device’s design complexity and price. For instance, the price of a 10GbE NIC can be up to $1,400, while a 1GbE NIC costs less than $40. Therefore having highly efficient network processing with the low complexity of NIC becomes a critical question to answer.

In order to understand network processing efficiency, we used the network benchmark Iperf over 10GbE on Intel Xeon quad-core processor-based servers to measure per-packet processing overhead. It instruments the driver and OS kernel using hardware performance counters provided by the CPU to pinpoint real performance bottlenecks. Unlike existing profiling tools attributing CPU costs such as retired cycles or cache misses to functions, the instrumentation is implemented at the fine-grained level and can pinpoint data incurring the cost.

Through detailed overhead analysis we obtained several new observations, which have not yet been reported.

First, the study found that besides data/packet copy from kernel-to-user space, the driver and socket buffer release unexpectedly take 46 percent of processing time for large I/O sizes and even 54 percent for small I/O sizes. Thus, the major network processing bottlenecks lie in the driver (greater than 26 percent), data copy (up to 34 percent depending on I/O sizes) and buffer release (greater than 20 percent), rather than the TCP/IP protocol itself.

Second, in contrast to the generally-accepted notion that long latency NIC register access results in the driver overhead, our analysis showed that the overhead comes from memory stalls to network buffer data structures. Simply integrating NIC into CPUs like Niagara 2 processors with two integrated 10GbE NICs for reducing register access latency does not help network processing performance a lot.

Third, releasing network buffers in OS results in memory stalls to in-kernel page data structures, contributing to the buffer release overhead.

Finally, besides memory stalls to packets, data copy implemented as a series of load/store instructions, also has significant time on L1 cache misses and instruction execution. Prevailing platform optimizations for data copy, like Direct Cache Access (DCA), are insufficient for addressing the copy issue.

The studies reveal that besides memory stalls, each packet incurs several cache misses on corresponding data and has considerable data copy overhead. Some intuitive solutions like having larger last-level caches or extending the optimization DCA might help network processing performance to some extent, but have major limitations. Increasing cache size is an ineffective approach and more importantly, is unable to address NIC challenges and the data copy issue. Unlike increasing cache size, extending DCA to deliver both packets and those missed data from NICs into caches is more efficient in avoiding memory stalls. The downside is that it stresses NICs more heavily and degrades PCI Express efficiency of packet transfers. In addition, it does not consider the data copy issue.

To efficiently tackle all challenges from high-speed networks, the paper proposes a new server I/O architecture, where the responsibility for managing DMA descriptors is moved to an on-chip network engine, known as NEngine. The on-chip descriptor management exposes plenty of optimization opportunities like extending descriptors. Information about data incurring memory stalls during network processing is added into descriptors.

It basically works like this: When the NIC receives a packet, it directly pushes the packet into NEngine without waiting for long latency descriptors fetches. NEngine reads extended descriptors to obtain packet destination location and information about data incurring memory stalls. Then, it moves the packet into the destination memory location and checks whether data incurring the stalls resides in caches. If not, NEngine sends data address to the hardware prefetching facility for loading the data, thus avoiding memory stalls to them during packet processing.To address the data copy issue, NEngine moves payload inside last level cache and invalidates source cache lines after the movement. Source data becomes useless and dead after the copy.

The new I/O architecture allows the DMA engine to have fast access to descriptors and keeps packets in CPU caches rather than in NIC buffers. These designs substantially reduce the burden on the DMA engine and avoid extensive NIC buffers in high-speed networks. While NICs are decoupled from DMA engine, they maintain other hardware features such as Receive Side Scaling and Interrupt Coalescing.

Unlike previous approaches such as DCA, the new server I/O architecture ameliorates all major performance bottlenecks of network processing and simplifies NIC designs, enabling general-purpose platforms to be well suited for high-speed networks. Performance evaluation shows that it significantly improves the network processing efficiency and Web server throughput while substantially reducing the NIC hardware complexity. The new server I/O architecture inherits the descriptor-based software/hardware interface and only needs some modest support from the device driver and the data copy component. There is no need to modify TCP/IP protocol stack, system calls or user applications.

About the Author

Guangdeng Liao is a fifth year Ph.D. student at University of California, Riverside. His research interest lies in high performance I/O, computer architecture and virtualization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This