New Architecture Tackles High Speed Network Challenges

By Guangdeng Liao

January 31, 2011

Ethernet continues to be the most widely used network architecture today for its low cost and backward compatibility with the existing Ethernet infrastructure. Driven by increasing networking demands for application such as Internet search, Web hosting, video on demand, and high performance computing, network speed is rapidly migrating to 10 Gigabits per second and beyond. But as network speed increases, it poses a number of great challenges on computer servers.

Recently, researchers at University of California, Riverside have studied I/O challenges from high-speed networks and invented a new architecture to efficiently tackle those challenges. A paper describing the research, “A New Server I/O Architecture for High Speed Networks“, was co-authored by graduate student Guangdeng Liao and professor Laxmi Bhuyan. The paper will be presented February 15 at the IEEE International Symposium on High-Performance Computer Architecture (HPCA) in San Antonio, Texas. What follows is an encapsulation of this work and a description of the new I/O design.

Traditional architectural designs of processors, cache hierarchies and system interconnects focus on CPU and/or memory-intensive applications, and are decoupled from I/O considerations. As a result, they tend to be inefficient for network processing. Network processing over 10 Gigabit Ethernet (10GbE) easily saturates two cores of an Intel Xeon quad-core processor. Assuming ideal scalability over multiple cores, network processing over 40GbE and 100GbE will saturate 8 and 20 cores, respectively. In addition to the processing inefficiency, the increasing network speed also poses a big challenge to network interface card (NIC) designs. DMA descriptor fetches over a long latency PCI Express bus heavily stress the DMA engine in NICs and necessitate larger NIC buffers to temporarily keep packets.

These requirements significantly increase the device’s design complexity and price. For instance, the price of a 10GbE NIC can be up to $1,400, while a 1GbE NIC costs less than $40. Therefore having highly efficient network processing with the low complexity of NIC becomes a critical question to answer.

In order to understand network processing efficiency, we used the network benchmark Iperf over 10GbE on Intel Xeon quad-core processor-based servers to measure per-packet processing overhead. It instruments the driver and OS kernel using hardware performance counters provided by the CPU to pinpoint real performance bottlenecks. Unlike existing profiling tools attributing CPU costs such as retired cycles or cache misses to functions, the instrumentation is implemented at the fine-grained level and can pinpoint data incurring the cost.

Through detailed overhead analysis we obtained several new observations, which have not yet been reported.

First, the study found that besides data/packet copy from kernel-to-user space, the driver and socket buffer release unexpectedly take 46 percent of processing time for large I/O sizes and even 54 percent for small I/O sizes. Thus, the major network processing bottlenecks lie in the driver (greater than 26 percent), data copy (up to 34 percent depending on I/O sizes) and buffer release (greater than 20 percent), rather than the TCP/IP protocol itself.

Second, in contrast to the generally-accepted notion that long latency NIC register access results in the driver overhead, our analysis showed that the overhead comes from memory stalls to network buffer data structures. Simply integrating NIC into CPUs like Niagara 2 processors with two integrated 10GbE NICs for reducing register access latency does not help network processing performance a lot.

Third, releasing network buffers in OS results in memory stalls to in-kernel page data structures, contributing to the buffer release overhead.

Finally, besides memory stalls to packets, data copy implemented as a series of load/store instructions, also has significant time on L1 cache misses and instruction execution. Prevailing platform optimizations for data copy, like Direct Cache Access (DCA), are insufficient for addressing the copy issue.

The studies reveal that besides memory stalls, each packet incurs several cache misses on corresponding data and has considerable data copy overhead. Some intuitive solutions like having larger last-level caches or extending the optimization DCA might help network processing performance to some extent, but have major limitations. Increasing cache size is an ineffective approach and more importantly, is unable to address NIC challenges and the data copy issue. Unlike increasing cache size, extending DCA to deliver both packets and those missed data from NICs into caches is more efficient in avoiding memory stalls. The downside is that it stresses NICs more heavily and degrades PCI Express efficiency of packet transfers. In addition, it does not consider the data copy issue.

To efficiently tackle all challenges from high-speed networks, the paper proposes a new server I/O architecture, where the responsibility for managing DMA descriptors is moved to an on-chip network engine, known as NEngine. The on-chip descriptor management exposes plenty of optimization opportunities like extending descriptors. Information about data incurring memory stalls during network processing is added into descriptors.

It basically works like this: When the NIC receives a packet, it directly pushes the packet into NEngine without waiting for long latency descriptors fetches. NEngine reads extended descriptors to obtain packet destination location and information about data incurring memory stalls. Then, it moves the packet into the destination memory location and checks whether data incurring the stalls resides in caches. If not, NEngine sends data address to the hardware prefetching facility for loading the data, thus avoiding memory stalls to them during packet processing.To address the data copy issue, NEngine moves payload inside last level cache and invalidates source cache lines after the movement. Source data becomes useless and dead after the copy.

The new I/O architecture allows the DMA engine to have fast access to descriptors and keeps packets in CPU caches rather than in NIC buffers. These designs substantially reduce the burden on the DMA engine and avoid extensive NIC buffers in high-speed networks. While NICs are decoupled from DMA engine, they maintain other hardware features such as Receive Side Scaling and Interrupt Coalescing.

Unlike previous approaches such as DCA, the new server I/O architecture ameliorates all major performance bottlenecks of network processing and simplifies NIC designs, enabling general-purpose platforms to be well suited for high-speed networks. Performance evaluation shows that it significantly improves the network processing efficiency and Web server throughput while substantially reducing the NIC hardware complexity. The new server I/O architecture inherits the descriptor-based software/hardware interface and only needs some modest support from the device driver and the data copy component. There is no need to modify TCP/IP protocol stack, system calls or user applications.

About the Author

Guangdeng Liao is a fifth year Ph.D. student at University of California, Riverside. His research interest lies in high performance I/O, computer architecture and virtualization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This