New Architecture Tackles High Speed Network Challenges

By Guangdeng Liao

January 31, 2011

Ethernet continues to be the most widely used network architecture today for its low cost and backward compatibility with the existing Ethernet infrastructure. Driven by increasing networking demands for application such as Internet search, Web hosting, video on demand, and high performance computing, network speed is rapidly migrating to 10 Gigabits per second and beyond. But as network speed increases, it poses a number of great challenges on computer servers.

Recently, researchers at University of California, Riverside have studied I/O challenges from high-speed networks and invented a new architecture to efficiently tackle those challenges. A paper describing the research, “A New Server I/O Architecture for High Speed Networks“, was co-authored by graduate student Guangdeng Liao and professor Laxmi Bhuyan. The paper will be presented February 15 at the IEEE International Symposium on High-Performance Computer Architecture (HPCA) in San Antonio, Texas. What follows is an encapsulation of this work and a description of the new I/O design.

Traditional architectural designs of processors, cache hierarchies and system interconnects focus on CPU and/or memory-intensive applications, and are decoupled from I/O considerations. As a result, they tend to be inefficient for network processing. Network processing over 10 Gigabit Ethernet (10GbE) easily saturates two cores of an Intel Xeon quad-core processor. Assuming ideal scalability over multiple cores, network processing over 40GbE and 100GbE will saturate 8 and 20 cores, respectively. In addition to the processing inefficiency, the increasing network speed also poses a big challenge to network interface card (NIC) designs. DMA descriptor fetches over a long latency PCI Express bus heavily stress the DMA engine in NICs and necessitate larger NIC buffers to temporarily keep packets.

These requirements significantly increase the device’s design complexity and price. For instance, the price of a 10GbE NIC can be up to $1,400, while a 1GbE NIC costs less than $40. Therefore having highly efficient network processing with the low complexity of NIC becomes a critical question to answer.

In order to understand network processing efficiency, we used the network benchmark Iperf over 10GbE on Intel Xeon quad-core processor-based servers to measure per-packet processing overhead. It instruments the driver and OS kernel using hardware performance counters provided by the CPU to pinpoint real performance bottlenecks. Unlike existing profiling tools attributing CPU costs such as retired cycles or cache misses to functions, the instrumentation is implemented at the fine-grained level and can pinpoint data incurring the cost.

Through detailed overhead analysis we obtained several new observations, which have not yet been reported.

First, the study found that besides data/packet copy from kernel-to-user space, the driver and socket buffer release unexpectedly take 46 percent of processing time for large I/O sizes and even 54 percent for small I/O sizes. Thus, the major network processing bottlenecks lie in the driver (greater than 26 percent), data copy (up to 34 percent depending on I/O sizes) and buffer release (greater than 20 percent), rather than the TCP/IP protocol itself.

Second, in contrast to the generally-accepted notion that long latency NIC register access results in the driver overhead, our analysis showed that the overhead comes from memory stalls to network buffer data structures. Simply integrating NIC into CPUs like Niagara 2 processors with two integrated 10GbE NICs for reducing register access latency does not help network processing performance a lot.

Third, releasing network buffers in OS results in memory stalls to in-kernel page data structures, contributing to the buffer release overhead.

Finally, besides memory stalls to packets, data copy implemented as a series of load/store instructions, also has significant time on L1 cache misses and instruction execution. Prevailing platform optimizations for data copy, like Direct Cache Access (DCA), are insufficient for addressing the copy issue.

The studies reveal that besides memory stalls, each packet incurs several cache misses on corresponding data and has considerable data copy overhead. Some intuitive solutions like having larger last-level caches or extending the optimization DCA might help network processing performance to some extent, but have major limitations. Increasing cache size is an ineffective approach and more importantly, is unable to address NIC challenges and the data copy issue. Unlike increasing cache size, extending DCA to deliver both packets and those missed data from NICs into caches is more efficient in avoiding memory stalls. The downside is that it stresses NICs more heavily and degrades PCI Express efficiency of packet transfers. In addition, it does not consider the data copy issue.

To efficiently tackle all challenges from high-speed networks, the paper proposes a new server I/O architecture, where the responsibility for managing DMA descriptors is moved to an on-chip network engine, known as NEngine. The on-chip descriptor management exposes plenty of optimization opportunities like extending descriptors. Information about data incurring memory stalls during network processing is added into descriptors.

It basically works like this: When the NIC receives a packet, it directly pushes the packet into NEngine without waiting for long latency descriptors fetches. NEngine reads extended descriptors to obtain packet destination location and information about data incurring memory stalls. Then, it moves the packet into the destination memory location and checks whether data incurring the stalls resides in caches. If not, NEngine sends data address to the hardware prefetching facility for loading the data, thus avoiding memory stalls to them during packet processing.To address the data copy issue, NEngine moves payload inside last level cache and invalidates source cache lines after the movement. Source data becomes useless and dead after the copy.

The new I/O architecture allows the DMA engine to have fast access to descriptors and keeps packets in CPU caches rather than in NIC buffers. These designs substantially reduce the burden on the DMA engine and avoid extensive NIC buffers in high-speed networks. While NICs are decoupled from DMA engine, they maintain other hardware features such as Receive Side Scaling and Interrupt Coalescing.

Unlike previous approaches such as DCA, the new server I/O architecture ameliorates all major performance bottlenecks of network processing and simplifies NIC designs, enabling general-purpose platforms to be well suited for high-speed networks. Performance evaluation shows that it significantly improves the network processing efficiency and Web server throughput while substantially reducing the NIC hardware complexity. The new server I/O architecture inherits the descriptor-based software/hardware interface and only needs some modest support from the device driver and the data copy component. There is no need to modify TCP/IP protocol stack, system calls or user applications.

About the Author

Guangdeng Liao is a fifth year Ph.D. student at University of California, Riverside. His research interest lies in high performance I/O, computer architecture and virtualization.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This