ARM Processors Set to Challenge x86 On Its Own Turf

By Michael Feldman

February 2, 2011

The dominance of the x86 in desktop machines, servers, and supercomputers will soon be challenged by the ARM microprocessor. That according Tudor Brown, ARM Holdings’ president and co-founder, who this week took a few shots at the x86 dynasty. Brown’s comments and recent events suggest future ARM-based processors could form a credible threat to high-end CPUs made by AMD and Intel.

Brown’s comments this week, which appear in a MarketWatch report, reiterate the company’s plans to design higher end microprocessors aimed at the desktop and server market, the current stronghold of the x86. According to the him, ARM’s superior energy efficiency is now especially sought after in the datacenter.

From the MarketWatch article: “ARM continues to develop efficient products in terms of power consumption and performance that’s very good for the mobile space,” said Brown. “Those same credentials are appropriate for as we move to servers and high-performance computing.”

ARM is a huge player in the mobile computing space, and is especially well entrenched in the fast-growing tablet market, where the architecture enjoys a 95 percent share. When total shipments are considered, ARM outruns x86 by about a 10-to-1 margin. In 2010, more than 6 billion ARM-based processors were sold, and that number is projected to grow to 8 or 9 billion over the next three years.

Volume is critical since it drives down chip costs and attracts software providers, who, for obvious reasons, prefer to sell their wares on the most widely deployed architectures. In fact, it was the economics of volume that allowed the x86 to attack the server and HPC market from below, displacing higher-end RISC offerings, not to mention Intel’s home-grown Itanium CPU.

Berkeley computer science professor and RISC pioneer Dave Patterson thinks RISC is due for a comeback though. In a recent blog posted on the ARM Holdings website, Patterson argues that the “PostPC” era will see a return to the simpler, more efficient designs of RISC architectures:

“The importance of maintaining the sequential programming model combined with the increasingly abundant number of transistors from Moore’s Law led, in my view, to wretched excess in computer design.” he writes. “Measured by performance per transistor or by performance per watt, the designs of the late 1990s and early 2000s were some of the least efficient microprocessors ever built. This lavishness was acceptable for PCs, where binary compatibility was paramount and cost and battery life were less important, but performance was delivered more by brute force than by elegance.”

It’s not just about shipment volumes and computational efficiency though. ARM has a very different business model than the x86 vendors — one that allows a lot more players into the game. Unlike Intel and AMD, ARM Holdings licenses its microprocessor designs to other vendors, who build the actual processors or devices and pay royalties to ARM in addition to licensing fees. Although Intel Corporation dwarfs ARM Holdings in employee count and revenue, if you include the 200-odd companies that build products with ARM intellectual property, the situation is reversed.

Currently, ARM processors lack a foothold on the desktop and server. But the company’s next-generation Cortex-A15 chip is certainly a step in that direction. Although still essentially a 32-bit design, the A15 adds double-precision floating point support, a 128-bit SIMD engine (NEON), a 1 TB address reach, ECC on cache, virtualization support, as well as much better performance than the current Cortex-A9 generation. The design allows for a 4-way SMP cache-coherent processor, with the possibility for up to 8 cores (or perhaps even 16 cores) to be supported using the CoreLink CCI-400 interconnect. The first A15 products are expected to be delivered sometime in 2012.

ARM is targeting the A15 architecture to everything from smartphones and tablets to network routers and low-power servers. Energy efficiency is the big selling point here. In ultra-scale datacenters aimed at Web search, social media, media serving, and essentially any throughput-intensive application, energy usage is a critical cost. For the same reason, high performance computing facilities are also energy constrained, encouraging HPC users and vendors to search for lower power alternatives to the x86.

The initial chipmaker to latch onto ARM for high-end computing is NVIDIA, who announced its intentions to marry future ARM CPUs with “Maxwell” generation GPU cores on the same chip. Those parts are slated to end up in desktops, servers, and supercomputers, and compete head-on with x86-based offerings from Intel and AMD. At this point, it’s not clear if NVIDIA intends to use the A15 as the basis for its first CPU-GPU processors or wait for a full 64-bit capable ARM architecture, which at this point is still under wraps.

Although NVIDIA is the first vendor to reveal its plans to build ARM-flavored chips for the server market, there’s nothing to prevent other vendors from following suit. It’s not unreasonable to imagine firms like Texas Instruments or Samsung making ARM server parts for this lower volume (but higher margin) market. Because of the open licensing model, an ARM-based server business could provide a much greater diversity of offerings than would be possible from the current x86 duopoly.

In HPC, companies that want to stake out a niche with custom FP accelerators (think ClearSpeed-like vendors) might consider an ARM-SIMD hybrid chip analogous to NVIDIA’s ARM-GPU processor. SiCortex-like companies could design ultra-low power HPC machines by tweaking the ARM design for their own purposes, or even second-sourcing existing ARM server chips. Since manycore programming frameworks like the open standard OpenCL (and the closed standard CUDA) are now available, these same companies can offer software stacks that leverage the growing software base built on top of these APIs.

Of course, AMD and Intel are not about to let ARM’s expansion go unchallenged. In fact as ARM prepares to move up the food chain into x86 markets, AMD and Intel are moving into the low-power space, with Bobcat and Atom, respectively. Especially as smartphones and tablets eat into the desktop/laptop space, the x86 makers are following their customers’ demands.

Intel, in particular, with its x86-compatible Atom processors built for low-power mobile computing, already has an architecture that is at least as capable as the current crop of ARM processors in performance, although not quite as impressive in the energy efficiency department. But given Intel’s considerable R&D heft and superior chip manufacturing capability, the company has a decent chance of taking the battle to ARM at the low end as well as defending its high-end territory.

ARM’s largest weakness in the desktop and server space is software. Although Microsoft just announced it will support ARM on Windows 8, the architecture has a big stack of software to swallow before it can reach parity with x86, especially in the server arena. None of this is insurmountable for ARM proponents, and we may be at a point where the business model of chip making and shifting customer demands now favor the little guys.

On the other hand, Intel and AMD have been pushing past their RISC challengers for nearly three decades, from the PowerPC to Sparc. Over the next few years we’ll see if the x86 juggernaut has run out of steam or if it can prevail at least one more time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This