Mars as a Service: Cloud Computing for the Red Planet Exploration Era

By Dr. Jose Luis Vazquez-Poletti

February 3, 2011

What do clouds and a distant red planet with a thin atmosphere have in common? Dr. Jose Luis Vazquez-Poletti from Universidad Complutense de Madrid explains how cloud computing is being deployed in innovative space missions that take aim at Mars.  He reports on the outcome of a meeting of the Mars MetNet Mission, which was held at the Finnish Meteorological Institute headquarters in Helsinki and describes in detail some of the cutting-edge research that is making use of cloud-based resources to handle the massive data expected.

The MetNet project aims to go where no other Mars missions have gone before, at least in terms of the way it will gather and then process data. This mission to Mars will be based on the power of a new type of dandelion seed-shaped, semi-hard landing vehicle called the MetNet Lander.

The leaders of the mission hope to deploy several of these oddly-shaped landers (as shown to the left) on Martian soil. While these lofty goals will take shape over a number of years, the first step in the mission to launch a MetNet Mars precursor mission with the first few landers being deployed in the coming year.

The main idea behind these vehicles is that by using a state-of-the-art inflatable entry and descent systems (instead of rigid heat shields and parachutes like those from the earlier semi-hard landing devices) the ratio of the payload mass to the overall mass is optimized. This means that more mass and volume resources are spared for the science payload.

The scientific payload of the Mars MetNet Mission encompasses separate instrument packages for the Martian surface operation phase. At the Martian surface, the lander will take panoramic pictures and will also perform observations of pressure, temperature, humidity, magnetism, as well as atmospheric optical depth.

The network of MetNet landers will provide valuable scientific data, decisive for studying the Martian atmosphere and its phenomena. Countries involved are Finland (Finnish Meteorological Institute), Russia  (Lavochkin Space Association and Russian Space Institute) and Spain (Instituto Nacional de Técnica Aerospacial).

The collaboration developed in Mars MetNet by our group, the Distributed Systems Architecture Research Group led by Prof. Ignacio M. Llorente from the Universidad Complutense de Madrid has much to do with cloud computing… in fact, the collaborative effort is dedicated to using cloud computing for boosting all possible applications pertaining to the Mars mission, as will be explained in greater detail in a moment.

Project Details

We began this collaboration with the Mars MetNet Mission more than a year ago, when they were dealing with the tracing of Phobos, the biggest Martian moon which orbits at about 9,400 Km (5,800 miles) distance from the planet’s center, completing its cycle nearly 3 times a day (a Martian day lasts 24:39 hours).

The prediction of each Phobos’ eclipse is important for the onboard instruments, which obviously depend on the landing coordinates. The challenge arises when the approximated landing area is not known until two hours before the touchdown. For this reason, an application for tracing Phobos was developed by the Meiga-MetNet Team, in order to provide a Phobos cyclogram, which is the trajectory of the Martian moon in Astronomy terms, using coordinates, dates and time intervals as an input. This way, the MetNet lander would achieve its exact location on the Martian surface by comparing the position of Phobos and the cyclogram, that is to be sent to the probe before the landing procedure.

Martian Clouds

We performed an initial parallelization of the application so that the complete set of coordinates pertaining to the approximated landing area can be processed with a desired grain. This process of profiling brought us to the conclusion that the needed hardware could be too expensive for executing this HPC application only twice a year. We had no way of even knowing if there would be other uses for this costly hardware either.

For this reason we turned to Amazon EC2, the de facto standard public cloud, attracted by its high speed deployment and its “pay-as-you-go” basis. Because all the possible setups that Amazon EC2 was offering by means of instance types and number, we crafted and validated an execution model for the application considering time, cost and a metric involving both [1].  This way, the optimal infrastructure could be obtained given a problem size.

Considering one of the possible setups, its baremetal equivalent could be a cluster consisting in 37 nodes of the latest HP Proliant DL170 G6 Server (for example). Taking its web price of $4,909 per node, we would get our machines for $181,633 without considering any other expenses like shipping or insurances. Great, but… what about electricity? Administrator’s salary? Startup time? Even more, are we going to use this infrastructure at full power in a 24×7 fashion? Probably not.

On the other hand and according to our model, Amazon EC2 provides the needed infrastructure for $7.50.

During the meeting, I performed a comprehensive presentation explaining what Cloud Computing is and its elements to the rest of the Mars MetNet Scientific Team. The best way to make a base scientist understand Cloud Computing is to provide a good assortment of working examples and success stories. Of course, I recommended “HPC in the Cloud” as one of the main sources of news about our favorite technology.

Among these examples was the NASA case. They begun with the Nebula initiative in 2009, providing an alternative to the costly construction of additional data centers whenever NASA scientist or engineers require additional processing. This is accomplished in a fancy way and, in my point of view, following a real life “on demand” definition, as truck containers are delivered to the demanding research centers. These shipping containers can hold up to 15,000 CPU cores or 15 petabytes of storage while proving 50% more energy efficient than traditional data centers.

However, NASA decided last December 2010 to make another step on its Cloud path: they started to use the Amazon public cloud for its ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer), to be commissioned to future Mars exploring Missions. Machine instances from Amazon EC2 are used for processing satellite high-definition images in order to take navigation decisions.

But one year before NASA, the Mars MetNet Mission was already using Amazon EC2 as I explained at the beginning of this article. The results obtained for the locations of the different Martian probes were presented during the meeting and the detection of eclipses was confirmed by the experimental (and historic) data retrieved. This confirmed that the Phobos tracing model will help the Mars MetNet Mission and that Cloud Computing will be an indispensable tool, due to the huge amount of computational power needed in a very short term of time.

After my presentation, a new application was proposed. This time it has to do with the process of the meteorological data from landers pertaining to previous Mars Missions. This work has much to do with what could be addressed as “Archaeological Computing”, because much of the raw data is about 30  years old! Despite its age, the meteorological information obtained from the landers will be very useful for the Mars MetNet Mission.

The amount of data is huge and parallelization may solve some of the problems, considering several processes which respond to certain parameters. These parameters are provided by a Meteorological Model, developed within the Finnish Meteorological Institute. However, computing resource availability is another thing to take into account regarding the numerous application executions needed, so this is where a public cloud infrastructure helps reaching the goal.

But the advantages are more, because the final framework is intended to be used with the data obtained by the Mars MetNet probe, and it will be increased while more probes from the meteorological network become part of the Martian landscape.

To conclude, space missions are bringing many HPC challenges and adopting cloud computing is a decisive move for meeting them. Additionally, all research done on cloud computing for fulfilling the space mission’s demands will revert in other areas, as other achievements outside computing already did–like lyophilized food or Velcro straps.

If you are curious about the landing procedure of these dandelion-seed-shaped landers, I really encourage you to visit the Mars MetNet Mission website and watch the animation.

About the Author

Dr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Universidad Complutense de Madrid (Spain), and a Cloud Computing Researcher. He is (and has been) directly involved in EU funded projects, such as EGEE (Grid Computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives. His interests lie mainly in how the Cloud benefits real life applications, specially those pertaining to the High Performance Computing domain.

Dr. Vazquez-Poletti is also the author of a popular article that appeared in HPC in the Cloud describing a range of upcoming cloud computing research projects pending in Europe.

Linkedin: http://es.linkedin.com/in/jlvazquezpoletti/

Website: http://dsa-research.org/jlvazquez/

[1] J. L. Vázquez-Poletti, G. Barderas, I. M. Llorente and P. Romero: A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. PARA2010: State of the Art in Scientific and Parallel Computing, Reykjavík (Iceland), June 2010. Proceedings to appear in Lecture Notes in Computer Science (LNCS).
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This