Mars as a Service: Cloud Computing for the Red Planet Exploration Era

By Dr. Jose Luis Vazquez-Poletti

February 3, 2011

What do clouds and a distant red planet with a thin atmosphere have in common? Dr. Jose Luis Vazquez-Poletti from Universidad Complutense de Madrid explains how cloud computing is being deployed in innovative space missions that take aim at Mars.  He reports on the outcome of a meeting of the Mars MetNet Mission, which was held at the Finnish Meteorological Institute headquarters in Helsinki and describes in detail some of the cutting-edge research that is making use of cloud-based resources to handle the massive data expected.

The MetNet project aims to go where no other Mars missions have gone before, at least in terms of the way it will gather and then process data. This mission to Mars will be based on the power of a new type of dandelion seed-shaped, semi-hard landing vehicle called the MetNet Lander.

The leaders of the mission hope to deploy several of these oddly-shaped landers (as shown to the left) on Martian soil. While these lofty goals will take shape over a number of years, the first step in the mission to launch a MetNet Mars precursor mission with the first few landers being deployed in the coming year.

The main idea behind these vehicles is that by using a state-of-the-art inflatable entry and descent systems (instead of rigid heat shields and parachutes like those from the earlier semi-hard landing devices) the ratio of the payload mass to the overall mass is optimized. This means that more mass and volume resources are spared for the science payload.

The scientific payload of the Mars MetNet Mission encompasses separate instrument packages for the Martian surface operation phase. At the Martian surface, the lander will take panoramic pictures and will also perform observations of pressure, temperature, humidity, magnetism, as well as atmospheric optical depth.

The network of MetNet landers will provide valuable scientific data, decisive for studying the Martian atmosphere and its phenomena. Countries involved are Finland (Finnish Meteorological Institute), Russia  (Lavochkin Space Association and Russian Space Institute) and Spain (Instituto Nacional de Técnica Aerospacial).

The collaboration developed in Mars MetNet by our group, the Distributed Systems Architecture Research Group led by Prof. Ignacio M. Llorente from the Universidad Complutense de Madrid has much to do with cloud computing… in fact, the collaborative effort is dedicated to using cloud computing for boosting all possible applications pertaining to the Mars mission, as will be explained in greater detail in a moment.

Project Details

We began this collaboration with the Mars MetNet Mission more than a year ago, when they were dealing with the tracing of Phobos, the biggest Martian moon which orbits at about 9,400 Km (5,800 miles) distance from the planet’s center, completing its cycle nearly 3 times a day (a Martian day lasts 24:39 hours).

The prediction of each Phobos’ eclipse is important for the onboard instruments, which obviously depend on the landing coordinates. The challenge arises when the approximated landing area is not known until two hours before the touchdown. For this reason, an application for tracing Phobos was developed by the Meiga-MetNet Team, in order to provide a Phobos cyclogram, which is the trajectory of the Martian moon in Astronomy terms, using coordinates, dates and time intervals as an input. This way, the MetNet lander would achieve its exact location on the Martian surface by comparing the position of Phobos and the cyclogram, that is to be sent to the probe before the landing procedure.

Martian Clouds

We performed an initial parallelization of the application so that the complete set of coordinates pertaining to the approximated landing area can be processed with a desired grain. This process of profiling brought us to the conclusion that the needed hardware could be too expensive for executing this HPC application only twice a year. We had no way of even knowing if there would be other uses for this costly hardware either.

For this reason we turned to Amazon EC2, the de facto standard public cloud, attracted by its high speed deployment and its “pay-as-you-go” basis. Because all the possible setups that Amazon EC2 was offering by means of instance types and number, we crafted and validated an execution model for the application considering time, cost and a metric involving both [1].  This way, the optimal infrastructure could be obtained given a problem size.

Considering one of the possible setups, its baremetal equivalent could be a cluster consisting in 37 nodes of the latest HP Proliant DL170 G6 Server (for example). Taking its web price of $4,909 per node, we would get our machines for $181,633 without considering any other expenses like shipping or insurances. Great, but… what about electricity? Administrator’s salary? Startup time? Even more, are we going to use this infrastructure at full power in a 24×7 fashion? Probably not.

On the other hand and according to our model, Amazon EC2 provides the needed infrastructure for $7.50.

During the meeting, I performed a comprehensive presentation explaining what Cloud Computing is and its elements to the rest of the Mars MetNet Scientific Team. The best way to make a base scientist understand Cloud Computing is to provide a good assortment of working examples and success stories. Of course, I recommended “HPC in the Cloud” as one of the main sources of news about our favorite technology.

Among these examples was the NASA case. They begun with the Nebula initiative in 2009, providing an alternative to the costly construction of additional data centers whenever NASA scientist or engineers require additional processing. This is accomplished in a fancy way and, in my point of view, following a real life “on demand” definition, as truck containers are delivered to the demanding research centers. These shipping containers can hold up to 15,000 CPU cores or 15 petabytes of storage while proving 50% more energy efficient than traditional data centers.

However, NASA decided last December 2010 to make another step on its Cloud path: they started to use the Amazon public cloud for its ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer), to be commissioned to future Mars exploring Missions. Machine instances from Amazon EC2 are used for processing satellite high-definition images in order to take navigation decisions.

But one year before NASA, the Mars MetNet Mission was already using Amazon EC2 as I explained at the beginning of this article. The results obtained for the locations of the different Martian probes were presented during the meeting and the detection of eclipses was confirmed by the experimental (and historic) data retrieved. This confirmed that the Phobos tracing model will help the Mars MetNet Mission and that Cloud Computing will be an indispensable tool, due to the huge amount of computational power needed in a very short term of time.

After my presentation, a new application was proposed. This time it has to do with the process of the meteorological data from landers pertaining to previous Mars Missions. This work has much to do with what could be addressed as “Archaeological Computing”, because much of the raw data is about 30  years old! Despite its age, the meteorological information obtained from the landers will be very useful for the Mars MetNet Mission.

The amount of data is huge and parallelization may solve some of the problems, considering several processes which respond to certain parameters. These parameters are provided by a Meteorological Model, developed within the Finnish Meteorological Institute. However, computing resource availability is another thing to take into account regarding the numerous application executions needed, so this is where a public cloud infrastructure helps reaching the goal.

But the advantages are more, because the final framework is intended to be used with the data obtained by the Mars MetNet probe, and it will be increased while more probes from the meteorological network become part of the Martian landscape.

To conclude, space missions are bringing many HPC challenges and adopting cloud computing is a decisive move for meeting them. Additionally, all research done on cloud computing for fulfilling the space mission’s demands will revert in other areas, as other achievements outside computing already did–like lyophilized food or Velcro straps.

If you are curious about the landing procedure of these dandelion-seed-shaped landers, I really encourage you to visit the Mars MetNet Mission website and watch the animation.

About the Author

Dr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Universidad Complutense de Madrid (Spain), and a Cloud Computing Researcher. He is (and has been) directly involved in EU funded projects, such as EGEE (Grid Computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives. His interests lie mainly in how the Cloud benefits real life applications, specially those pertaining to the High Performance Computing domain.

Dr. Vazquez-Poletti is also the author of a popular article that appeared in HPC in the Cloud describing a range of upcoming cloud computing research projects pending in Europe.

Linkedin: http://es.linkedin.com/in/jlvazquezpoletti/

Website: http://dsa-research.org/jlvazquez/

[1] J. L. Vázquez-Poletti, G. Barderas, I. M. Llorente and P. Romero: A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. PARA2010: State of the Art in Scientific and Parallel Computing, Reykjavík (Iceland), June 2010. Proceedings to appear in Lecture Notes in Computer Science (LNCS).
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This