Mars as a Service: Cloud Computing for the Red Planet Exploration Era

By Dr. Jose Luis Vazquez-Poletti

February 3, 2011

What do clouds and a distant red planet with a thin atmosphere have in common? Dr. Jose Luis Vazquez-Poletti from Universidad Complutense de Madrid explains how cloud computing is being deployed in innovative space missions that take aim at Mars.  He reports on the outcome of a meeting of the Mars MetNet Mission, which was held at the Finnish Meteorological Institute headquarters in Helsinki and describes in detail some of the cutting-edge research that is making use of cloud-based resources to handle the massive data expected.

The MetNet project aims to go where no other Mars missions have gone before, at least in terms of the way it will gather and then process data. This mission to Mars will be based on the power of a new type of dandelion seed-shaped, semi-hard landing vehicle called the MetNet Lander.

The leaders of the mission hope to deploy several of these oddly-shaped landers (as shown to the left) on Martian soil. While these lofty goals will take shape over a number of years, the first step in the mission to launch a MetNet Mars precursor mission with the first few landers being deployed in the coming year.

The main idea behind these vehicles is that by using a state-of-the-art inflatable entry and descent systems (instead of rigid heat shields and parachutes like those from the earlier semi-hard landing devices) the ratio of the payload mass to the overall mass is optimized. This means that more mass and volume resources are spared for the science payload.

The scientific payload of the Mars MetNet Mission encompasses separate instrument packages for the Martian surface operation phase. At the Martian surface, the lander will take panoramic pictures and will also perform observations of pressure, temperature, humidity, magnetism, as well as atmospheric optical depth.

The network of MetNet landers will provide valuable scientific data, decisive for studying the Martian atmosphere and its phenomena. Countries involved are Finland (Finnish Meteorological Institute), Russia  (Lavochkin Space Association and Russian Space Institute) and Spain (Instituto Nacional de Técnica Aerospacial).

The collaboration developed in Mars MetNet by our group, the Distributed Systems Architecture Research Group led by Prof. Ignacio M. Llorente from the Universidad Complutense de Madrid has much to do with cloud computing… in fact, the collaborative effort is dedicated to using cloud computing for boosting all possible applications pertaining to the Mars mission, as will be explained in greater detail in a moment.

Project Details

We began this collaboration with the Mars MetNet Mission more than a year ago, when they were dealing with the tracing of Phobos, the biggest Martian moon which orbits at about 9,400 Km (5,800 miles) distance from the planet’s center, completing its cycle nearly 3 times a day (a Martian day lasts 24:39 hours).

The prediction of each Phobos’ eclipse is important for the onboard instruments, which obviously depend on the landing coordinates. The challenge arises when the approximated landing area is not known until two hours before the touchdown. For this reason, an application for tracing Phobos was developed by the Meiga-MetNet Team, in order to provide a Phobos cyclogram, which is the trajectory of the Martian moon in Astronomy terms, using coordinates, dates and time intervals as an input. This way, the MetNet lander would achieve its exact location on the Martian surface by comparing the position of Phobos and the cyclogram, that is to be sent to the probe before the landing procedure.

Martian Clouds

We performed an initial parallelization of the application so that the complete set of coordinates pertaining to the approximated landing area can be processed with a desired grain. This process of profiling brought us to the conclusion that the needed hardware could be too expensive for executing this HPC application only twice a year. We had no way of even knowing if there would be other uses for this costly hardware either.

For this reason we turned to Amazon EC2, the de facto standard public cloud, attracted by its high speed deployment and its “pay-as-you-go” basis. Because all the possible setups that Amazon EC2 was offering by means of instance types and number, we crafted and validated an execution model for the application considering time, cost and a metric involving both [1].  This way, the optimal infrastructure could be obtained given a problem size.

Considering one of the possible setups, its baremetal equivalent could be a cluster consisting in 37 nodes of the latest HP Proliant DL170 G6 Server (for example). Taking its web price of $4,909 per node, we would get our machines for $181,633 without considering any other expenses like shipping or insurances. Great, but… what about electricity? Administrator’s salary? Startup time? Even more, are we going to use this infrastructure at full power in a 24×7 fashion? Probably not.

On the other hand and according to our model, Amazon EC2 provides the needed infrastructure for $7.50.

During the meeting, I performed a comprehensive presentation explaining what Cloud Computing is and its elements to the rest of the Mars MetNet Scientific Team. The best way to make a base scientist understand Cloud Computing is to provide a good assortment of working examples and success stories. Of course, I recommended “HPC in the Cloud” as one of the main sources of news about our favorite technology.

Among these examples was the NASA case. They begun with the Nebula initiative in 2009, providing an alternative to the costly construction of additional data centers whenever NASA scientist or engineers require additional processing. This is accomplished in a fancy way and, in my point of view, following a real life “on demand” definition, as truck containers are delivered to the demanding research centers. These shipping containers can hold up to 15,000 CPU cores or 15 petabytes of storage while proving 50% more energy efficient than traditional data centers.

However, NASA decided last December 2010 to make another step on its Cloud path: they started to use the Amazon public cloud for its ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer), to be commissioned to future Mars exploring Missions. Machine instances from Amazon EC2 are used for processing satellite high-definition images in order to take navigation decisions.

But one year before NASA, the Mars MetNet Mission was already using Amazon EC2 as I explained at the beginning of this article. The results obtained for the locations of the different Martian probes were presented during the meeting and the detection of eclipses was confirmed by the experimental (and historic) data retrieved. This confirmed that the Phobos tracing model will help the Mars MetNet Mission and that Cloud Computing will be an indispensable tool, due to the huge amount of computational power needed in a very short term of time.

After my presentation, a new application was proposed. This time it has to do with the process of the meteorological data from landers pertaining to previous Mars Missions. This work has much to do with what could be addressed as “Archaeological Computing”, because much of the raw data is about 30  years old! Despite its age, the meteorological information obtained from the landers will be very useful for the Mars MetNet Mission.

The amount of data is huge and parallelization may solve some of the problems, considering several processes which respond to certain parameters. These parameters are provided by a Meteorological Model, developed within the Finnish Meteorological Institute. However, computing resource availability is another thing to take into account regarding the numerous application executions needed, so this is where a public cloud infrastructure helps reaching the goal.

But the advantages are more, because the final framework is intended to be used with the data obtained by the Mars MetNet probe, and it will be increased while more probes from the meteorological network become part of the Martian landscape.

To conclude, space missions are bringing many HPC challenges and adopting cloud computing is a decisive move for meeting them. Additionally, all research done on cloud computing for fulfilling the space mission’s demands will revert in other areas, as other achievements outside computing already did–like lyophilized food or Velcro straps.

If you are curious about the landing procedure of these dandelion-seed-shaped landers, I really encourage you to visit the Mars MetNet Mission website and watch the animation.

About the Author

Dr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Universidad Complutense de Madrid (Spain), and a Cloud Computing Researcher. He is (and has been) directly involved in EU funded projects, such as EGEE (Grid Computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives. His interests lie mainly in how the Cloud benefits real life applications, specially those pertaining to the High Performance Computing domain.

Dr. Vazquez-Poletti is also the author of a popular article that appeared in HPC in the Cloud describing a range of upcoming cloud computing research projects pending in Europe.

Linkedin: http://es.linkedin.com/in/jlvazquezpoletti/

Website: http://dsa-research.org/jlvazquez/

[1] J. L. Vázquez-Poletti, G. Barderas, I. M. Llorente and P. Romero: A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. PARA2010: State of the Art in Scientific and Parallel Computing, Reykjavík (Iceland), June 2010. Proceedings to appear in Lecture Notes in Computer Science (LNCS).
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This