Mars as a Service: Cloud Computing for the Red Planet Exploration Era

By Dr. Jose Luis Vazquez-Poletti

February 3, 2011

What do clouds and a distant red planet with a thin atmosphere have in common? Dr. Jose Luis Vazquez-Poletti from Universidad Complutense de Madrid explains how cloud computing is being deployed in innovative space missions that take aim at Mars.  He reports on the outcome of a meeting of the Mars MetNet Mission, which was held at the Finnish Meteorological Institute headquarters in Helsinki and describes in detail some of the cutting-edge research that is making use of cloud-based resources to handle the massive data expected.

The MetNet project aims to go where no other Mars missions have gone before, at least in terms of the way it will gather and then process data. This mission to Mars will be based on the power of a new type of dandelion seed-shaped, semi-hard landing vehicle called the MetNet Lander.

The leaders of the mission hope to deploy several of these oddly-shaped landers (as shown to the left) on Martian soil. While these lofty goals will take shape over a number of years, the first step in the mission to launch a MetNet Mars precursor mission with the first few landers being deployed in the coming year.

The main idea behind these vehicles is that by using a state-of-the-art inflatable entry and descent systems (instead of rigid heat shields and parachutes like those from the earlier semi-hard landing devices) the ratio of the payload mass to the overall mass is optimized. This means that more mass and volume resources are spared for the science payload.

The scientific payload of the Mars MetNet Mission encompasses separate instrument packages for the Martian surface operation phase. At the Martian surface, the lander will take panoramic pictures and will also perform observations of pressure, temperature, humidity, magnetism, as well as atmospheric optical depth.

The network of MetNet landers will provide valuable scientific data, decisive for studying the Martian atmosphere and its phenomena. Countries involved are Finland (Finnish Meteorological Institute), Russia  (Lavochkin Space Association and Russian Space Institute) and Spain (Instituto Nacional de Técnica Aerospacial).

The collaboration developed in Mars MetNet by our group, the Distributed Systems Architecture Research Group led by Prof. Ignacio M. Llorente from the Universidad Complutense de Madrid has much to do with cloud computing… in fact, the collaborative effort is dedicated to using cloud computing for boosting all possible applications pertaining to the Mars mission, as will be explained in greater detail in a moment.

Project Details

We began this collaboration with the Mars MetNet Mission more than a year ago, when they were dealing with the tracing of Phobos, the biggest Martian moon which orbits at about 9,400 Km (5,800 miles) distance from the planet’s center, completing its cycle nearly 3 times a day (a Martian day lasts 24:39 hours).

The prediction of each Phobos’ eclipse is important for the onboard instruments, which obviously depend on the landing coordinates. The challenge arises when the approximated landing area is not known until two hours before the touchdown. For this reason, an application for tracing Phobos was developed by the Meiga-MetNet Team, in order to provide a Phobos cyclogram, which is the trajectory of the Martian moon in Astronomy terms, using coordinates, dates and time intervals as an input. This way, the MetNet lander would achieve its exact location on the Martian surface by comparing the position of Phobos and the cyclogram, that is to be sent to the probe before the landing procedure.

Martian Clouds

We performed an initial parallelization of the application so that the complete set of coordinates pertaining to the approximated landing area can be processed with a desired grain. This process of profiling brought us to the conclusion that the needed hardware could be too expensive for executing this HPC application only twice a year. We had no way of even knowing if there would be other uses for this costly hardware either.

For this reason we turned to Amazon EC2, the de facto standard public cloud, attracted by its high speed deployment and its “pay-as-you-go” basis. Because all the possible setups that Amazon EC2 was offering by means of instance types and number, we crafted and validated an execution model for the application considering time, cost and a metric involving both [1].  This way, the optimal infrastructure could be obtained given a problem size.

Considering one of the possible setups, its baremetal equivalent could be a cluster consisting in 37 nodes of the latest HP Proliant DL170 G6 Server (for example). Taking its web price of $4,909 per node, we would get our machines for $181,633 without considering any other expenses like shipping or insurances. Great, but… what about electricity? Administrator’s salary? Startup time? Even more, are we going to use this infrastructure at full power in a 24×7 fashion? Probably not.

On the other hand and according to our model, Amazon EC2 provides the needed infrastructure for $7.50.

During the meeting, I performed a comprehensive presentation explaining what Cloud Computing is and its elements to the rest of the Mars MetNet Scientific Team. The best way to make a base scientist understand Cloud Computing is to provide a good assortment of working examples and success stories. Of course, I recommended “HPC in the Cloud” as one of the main sources of news about our favorite technology.

Among these examples was the NASA case. They begun with the Nebula initiative in 2009, providing an alternative to the costly construction of additional data centers whenever NASA scientist or engineers require additional processing. This is accomplished in a fancy way and, in my point of view, following a real life “on demand” definition, as truck containers are delivered to the demanding research centers. These shipping containers can hold up to 15,000 CPU cores or 15 petabytes of storage while proving 50% more energy efficient than traditional data centers.

However, NASA decided last December 2010 to make another step on its Cloud path: they started to use the Amazon public cloud for its ATHLETE (All-Terrain Hex-Limbed Extra-Terrestrial Explorer), to be commissioned to future Mars exploring Missions. Machine instances from Amazon EC2 are used for processing satellite high-definition images in order to take navigation decisions.

But one year before NASA, the Mars MetNet Mission was already using Amazon EC2 as I explained at the beginning of this article. The results obtained for the locations of the different Martian probes were presented during the meeting and the detection of eclipses was confirmed by the experimental (and historic) data retrieved. This confirmed that the Phobos tracing model will help the Mars MetNet Mission and that Cloud Computing will be an indispensable tool, due to the huge amount of computational power needed in a very short term of time.

After my presentation, a new application was proposed. This time it has to do with the process of the meteorological data from landers pertaining to previous Mars Missions. This work has much to do with what could be addressed as “Archaeological Computing”, because much of the raw data is about 30  years old! Despite its age, the meteorological information obtained from the landers will be very useful for the Mars MetNet Mission.

The amount of data is huge and parallelization may solve some of the problems, considering several processes which respond to certain parameters. These parameters are provided by a Meteorological Model, developed within the Finnish Meteorological Institute. However, computing resource availability is another thing to take into account regarding the numerous application executions needed, so this is where a public cloud infrastructure helps reaching the goal.

But the advantages are more, because the final framework is intended to be used with the data obtained by the Mars MetNet probe, and it will be increased while more probes from the meteorological network become part of the Martian landscape.

To conclude, space missions are bringing many HPC challenges and adopting cloud computing is a decisive move for meeting them. Additionally, all research done on cloud computing for fulfilling the space mission’s demands will revert in other areas, as other achievements outside computing already did–like lyophilized food or Velcro straps.

If you are curious about the landing procedure of these dandelion-seed-shaped landers, I really encourage you to visit the Mars MetNet Mission website and watch the animation.

About the Author

Dr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Universidad Complutense de Madrid (Spain), and a Cloud Computing Researcher. He is (and has been) directly involved in EU funded projects, such as EGEE (Grid Computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives. His interests lie mainly in how the Cloud benefits real life applications, specially those pertaining to the High Performance Computing domain.

Dr. Vazquez-Poletti is also the author of a popular article that appeared in HPC in the Cloud describing a range of upcoming cloud computing research projects pending in Europe.

Linkedin: http://es.linkedin.com/in/jlvazquezpoletti/

Website: http://dsa-research.org/jlvazquez/

[1] J. L. Vázquez-Poletti, G. Barderas, I. M. Llorente and P. Romero: A Model for Efficient Onboard Actualization of an Instrumental Cyclogram for the Mars MetNet Mission on a Public Cloud Infrastructure. PARA2010: State of the Art in Scientific and Parallel Computing, Reykjavík (Iceland), June 2010. Proceedings to appear in Lecture Notes in Computer Science (LNCS).
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This