The Weekly Top Five

By Tiffany Trader

February 3, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the computing power on display at SC10’s Student Cluster Competition; the University of Portsmouth’s new supercomputer; IBM Watson’s Linux platform; multicore advances at North Carolina State; and Intel’s new approach to university funding.

SC10’s Student Cluster Competition Raises the Bar

The student team from Louisiana State University was one of three teams to break the teraflop barrier at SC10’s Student Cluster Competition. This is the first year that any team has achieved that distinction, and the honor is shared with teams from the University of Texas and National Tsing Hua University (Taiwan).

In the Student Cluster Competition at SC10, which took place in New Orleans in November, eight teams gathered from around the country and from as far away as Russia and Taiwan to design and build clusters that solve real-world problems. The teams prepared for months working with their advisors and vendor partners. Winning teams were selected by a panel of experts, based on visualization output, presentations and interviews.

The LSU students received vendor support from HP and LATG, Mellanox, Portland Group and Adaptive Computing and were advised by Isaac Traxler, Unix Services Manager at LSU’s High Performance Computing (HPC) and Center for Computation & Technology. Under Traxler’s tutelage, the students spent one night a week for six months working on the project, in addition to many hours spent working on their own.

With 144 cores, the LSU cluster executed the competition’s four open source applications while staying within the 26 Amp constrained power limit.

UK-Based Supercomputer to Further Cosmic Reaserch

Scientists at the University of Portsmouth are about to get a new supercomputer, one that has the equivalent strength of approximately 1,000 desktop systems. The system will give cosmologists an edge when it comes to understanding galaxy formation and even the origin of gravity itself.

Named “SCIAMA,” the 1,008-core cluster was built by Dell and designed to process large amounts of astronomical data very quickly. Researchers at the University’s Institute of Cosmology and Gravitation (ICG) will use the cluster to solve complex cosmological problems, like simulating vast regions of the universe and exploring the properties of hundreds of millions of galaxies.

The supercomputer was named in honor of Dennis Sciama, a leading figure in the astrophysics and cosmology community. SCIAMA is also an acronym for SEPnet Computing Infrastructure for Astrophysical Modelling and Analysis.

Gary Burton, ICG’s senior specialist technician and the person who will soon be managing the supercomputer, explained that “the huge power of a supercomputer like SCIAMA is necessary to deal with the vast amount of observational data coming from satellites, telescopes and other detectors. Using it will allow us to explore the whole of cosmic history and analyse data that contains fundamental clues about the origins of the Universe.”

Watson Supercomputer Is SUSE Linux Machine

SUSE Linux is about to get its 15 minutes of fame. Novell announced this week that IBM Watson’s DeepQA software is running on SUSE Linux Enterprise Server 11. Watson is the supercomputer that will soon have the distinction of being the first non-human Jeopardy contestant. The novel tournament takes place Feb. 14-16.

Watson contains more than 200 million digital pages of information and operates at a speed of over 80 teraflops. IBM has designed Watson with a combination of deep analytics and rapid processing speeds that can make sense of the kind of “natural language” questions that are at the core of this popular primetime gameshow.

Linux has a long history of use in the field of high performance computing, and this is spelled out in the announcement:

Watson’s “Jeopardy!” appearance serves as further validation of the advantages of Linux in high-performance computing environments, as Linux has long been regarded as the operating system of choice among the fastest and most complex environments in the world. In the latest TOP500 list of the world’s most powerful supercomputers, 459 are running Linux and six of the top 10 systems are based on SUSE Linux Enterprise or a derivative of it.

NC State Research Team Speeds Chip Communication

North Carolina State University researchers have developed a hardware technology, called HAQu, that boosts software performance by enabling chip-to-chip communication. In multicore setups, the core communication is rather inefficient, with the chips using memory as the “third-party” intermediary. If the chips could communicate with one another directly, it would save a lot of time.

The computer engineers have detailed their findings in a paper, called “HAQu: Hardware-Accelerated Queueing for Fine-Grained Threading on a Chip Multiprocessor, (PDF)” which will be presented at the International Symposium on High-Performance Computer Architecture in San Antonio, Texas, on Feb. 14.

Dr. James Tuck, an assistant professor of electrical and computer engineering at NC State and co-author of the paper, explained in the university’s announcement that the “technology is more efficient because it provides a single instruction to send data to another core, which is six times faster than the best state-of-the-art software” (that the researchers could find). He went on to state that HAQu is “not hardware designed to communicate data on its own, but is hardware that expedites data-sharing using existing data paths on a computer chip.”

Even though it is a piece of hardware, HAQu is similar to software communication tools in that it is able to leverage a chip’s existing data paths. It is also reduces energy draw. Despite using more energy, it runs more quickly, resulting in a net decrease in consumption.

The same research team was responsible for a parallelization technique that could enable common computer programs to run up to 20 percent faster. The non-traditional approach works on programs that are normally difficult to parallelize, such as as word processors and Web browsers, by running memory-management functions on a separate thread. That work has also been written up as a paper (PDF).

Intel Labs Commits $100 Million to University Research

Intel Corp. announced intentions to invest $100 million into US university research over the next five years. With this new model, funding to researchers could increase five-fold.

Intel Labs will launch multiple Intel Science and Technology centers over the coming year in an effort to boost innovations in computing and communications. The centers will pursue advances in visual computing, mobility, security and embedded solutions. Stanford University will host the first center, with a focus on creating visualization solutions for both consumer and professionals.

From the release:

This first Intel Science and Technology Center, as well as those that will follow later this year, represents a new model of collaboration for the company. Until now, Intel Labs ran open collaboration centers near research universities and a substantial portion of the company’s funding focused on operating, maintaining and staffing these facilities. The new centers will be Intel-funded and jointly led by Intel and university researchers. They are designed to provide more dollars in the hands of researchers, and to encourage tighter collaboration between academic thought leaders in essential technology areas such as visual computing, security and mobile computing. For maximum flexibility, Intel will be able to tune its research agenda across the research centers over time. Intel plans to invite proposals from the academic community to continue pursuing the creation of additional Intel Science and Technology Centers.

Read more about the Stanford-based center, here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This