Must See TV: IBM Watson Heads for Jeopardy Showdown

By Michael Feldman

February 9, 2011

Next week the IBM supercomputer known as “Watson” will take on two of the most accomplished Jeopardy players of all time, Ken Jennings and Brad Rutter, in a three-game match starting on February 14. If Watson manages to best the humans, it will represent the most important advance in machine intelligence since IBM’s “Deep Blue” beat chess grandmaster Garry Kasparov in 1997. But this time around, the company also plans to make a business case for the technology. Trivial pursuit this is not.

And impressive technology it is. On the hardware side, Watson is comprised of 90 Power 750 servers, 16 TB of memory and 4 TB of disk storage, all housed in a relatively compact ten racks. The 750 is IBM’s elite Power7-based server targeted for high-end enterprise analytics. (The Power 755 is geared toward high performance technical computing and differs only marginally in CPU speed, memory capacity, and storage options.) Although the enterprise version can be ordered with 1 to 4 sockets of 6-core or 8-core Power7 chips, Watson is maxed out with the 4-socket, 8-core configuration using the top bin 3.55 GHz processors.

The 360 Power7 chips that make up Watson’s brain represent IBM’s best and brightest processor technology. Each Power7 is capable of over 500 GB/second of aggregate bandwidth, making it particularly adept at manipulating data at high speeds. FLOPS-wise, a 3.55 GHz Power7 delivers 218 Linpack gigaflops. For comparison, the POWER2 SC processor, which was the chip that powered cyber-chessmaster Deep Blue, managed a paltry 0.48 gigaflops, with the whole machine delivering a mere 11.4 Linpack gigaflops.

But FLOPS are not the real story here. Watson’s question-answering software presumably makes little use of floating-point number crunching. To deal with the game scenario, the system had to be endowed with a rather advanced version of natural language processing. But according to David Ferrucci, principal investigator for the project, it goes far beyond language smarts. The software system, called DeepQA, also incorporates machine learning, knowledge representation, and deep analytics.

Even so, the whole application rests on first understanding the Jeopardy clues, which, because they employ colloquialisms and often obscure references, can be challenging even for humans. That’s why this is such a good test case for natural language processing. Ferrucci says the ability to understand language is destined to become a very important aspect of computers. “It has to be that way,” he says. “We just cant imagine a future without it.”

But it’s the analysis component that we associate with real “intelligence.” The approach here reflects the open domain nature of the problem. According to Ferrucci, it wouldn’t have made sense to simply construct a database corresponding to possible Jeopardy clues. Such a model would have supported only a small fraction of the possible topics available to Jeopardy. Rather their approach was to use “as is” information sources — encyclopedias, dictionaries, thesauri, plays, books, etc. — and make the correlations dynamically.

The trick of course is to do all the processing in real-time. Contestants, at least the successful ones, need to provide an answer in just a few seconds. When the software was run on a lone 2.6 GHz CPU, it took around 2 hours to process a typical Jeopardy clue — not a very practical implementation. But when they parallelized the algorithms across the 2,880-core Watson, they were able to cut the processing time from a couple of hours to between 2 and 6 seconds.

Even at that, Watson doesn’t just spit out the answers. It forms hypotheses based on the evidence it finds and scores them at various confidence levels. Watson is programmed not to buzz in until it reaches a confidence of at least 50 percent, although this parameter can be self-adjusted depending on the game situation.

To accomplish all this, DeepQA employs an ensemble of algorithms — about a million lines of code — to gather and score the evidence. These include temporal reasoning algorithms to correlate times with events, statistical paraphrasing algorithms to evaluate semantic context, and geospatial reasoning to correlate locations.

It can also dynamically form associations, both in training and at game time, to connect disparate ideas. For example it can learn that inventors can patent information or that officials can submit resignations. Watson also shifts the weight it assigns to different algorithms based on which ones are delivering the more accurate correlations. This aspect of machine learning allows Watson to get “smarter” the more it plays the game.

The DeepQA programmers have also been refining the algorithms themselves over the past several years. In 2007, Watson could only answer a small fraction of Jeopardy clues with reasonable confidence and even at that, was only correct 47 percent of the time. When forced to answer the majority of the clues, like a grand champion would, it could only answer 15 percent correctly. By IBM’s own admission, Watson was playing “terrible.” The highest performing Jeopardy grand champions, like Jennings and Rutter, typically buzz in on 70 to 80 percent of the entries and give the correct answer 85 to 95 percent of time.

By 2010 Watson started playing at that level. Ferrucci says that while the system can’t buzz in on every question, it can now answer the vast majority of them in competitive time. “We can compete with grand champions in terms of precision, in terms of confidence, and in terms of speed,” he says.

In dozens of practice rounds against former Jeopardy champs, the computer was beating the humans with a 65 percent win rate. Watson also prevailed in a 15-question round against Jennings and Rutter in early January of this year. See the performance below.

None of this is a guarantee that Watson will prevail next week. But even if the machine just makes a decent showing, IBM will have pulled off quite possibly the best product placement in television history. Open domain question answering is not only one of the Holy Grails of artificial intelligence but has enormous potential for commercial applications. In areas as disparate as healthcare, tech support, business intelligence, security and finance, this type of platform could change those businesses irrevocably. John Kelly, senior vice president and director of IBM Research, boasts, “We’re going to revolutionize industries at a level that has never been done before.”

In the case of healthcare, it’s not a huge leap to imagine “expert” question answering systems helping doctors with medical diagnosis. A differential diagnosis is not much different from what Watson does when it analyzes a Jeopardy clue. Before it replaces Dr. House, though, the machine will have to prove itself in the game show arena.

If Jennings and Rutter defeat the supercomputer this time around, IBM will almost certainly ask for a rematch, as it did when Deep Blue initially lost its first chess match with Kasparov in 1996. The engineers will keep stroking the code and retraining the computer until Watson is truly unbeatable. Eventually the machine will prevail.

—–

For a broader discussion on this topic between the author and InterSect360 Research CEO Addison Snell, download this week’s HPCwire Soundbite podcast.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire