Must See TV: IBM Watson Heads for Jeopardy Showdown

By Michael Feldman

February 9, 2011

Next week the IBM supercomputer known as “Watson” will take on two of the most accomplished Jeopardy players of all time, Ken Jennings and Brad Rutter, in a three-game match starting on February 14. If Watson manages to best the humans, it will represent the most important advance in machine intelligence since IBM’s “Deep Blue” beat chess grandmaster Garry Kasparov in 1997. But this time around, the company also plans to make a business case for the technology. Trivial pursuit this is not.

And impressive technology it is. On the hardware side, Watson is comprised of 90 Power 750 servers, 16 TB of memory and 4 TB of disk storage, all housed in a relatively compact ten racks. The 750 is IBM’s elite Power7-based server targeted for high-end enterprise analytics. (The Power 755 is geared toward high performance technical computing and differs only marginally in CPU speed, memory capacity, and storage options.) Although the enterprise version can be ordered with 1 to 4 sockets of 6-core or 8-core Power7 chips, Watson is maxed out with the 4-socket, 8-core configuration using the top bin 3.55 GHz processors.

The 360 Power7 chips that make up Watson’s brain represent IBM’s best and brightest processor technology. Each Power7 is capable of over 500 GB/second of aggregate bandwidth, making it particularly adept at manipulating data at high speeds. FLOPS-wise, a 3.55 GHz Power7 delivers 218 Linpack gigaflops. For comparison, the POWER2 SC processor, which was the chip that powered cyber-chessmaster Deep Blue, managed a paltry 0.48 gigaflops, with the whole machine delivering a mere 11.4 Linpack gigaflops.

But FLOPS are not the real story here. Watson’s question-answering software presumably makes little use of floating-point number crunching. To deal with the game scenario, the system had to be endowed with a rather advanced version of natural language processing. But according to David Ferrucci, principal investigator for the project, it goes far beyond language smarts. The software system, called DeepQA, also incorporates machine learning, knowledge representation, and deep analytics.

Even so, the whole application rests on first understanding the Jeopardy clues, which, because they employ colloquialisms and often obscure references, can be challenging even for humans. That’s why this is such a good test case for natural language processing. Ferrucci says the ability to understand language is destined to become a very important aspect of computers. “It has to be that way,” he says. “We just cant imagine a future without it.”

But it’s the analysis component that we associate with real “intelligence.” The approach here reflects the open domain nature of the problem. According to Ferrucci, it wouldn’t have made sense to simply construct a database corresponding to possible Jeopardy clues. Such a model would have supported only a small fraction of the possible topics available to Jeopardy. Rather their approach was to use “as is” information sources — encyclopedias, dictionaries, thesauri, plays, books, etc. — and make the correlations dynamically.

The trick of course is to do all the processing in real-time. Contestants, at least the successful ones, need to provide an answer in just a few seconds. When the software was run on a lone 2.6 GHz CPU, it took around 2 hours to process a typical Jeopardy clue — not a very practical implementation. But when they parallelized the algorithms across the 2,880-core Watson, they were able to cut the processing time from a couple of hours to between 2 and 6 seconds.

Even at that, Watson doesn’t just spit out the answers. It forms hypotheses based on the evidence it finds and scores them at various confidence levels. Watson is programmed not to buzz in until it reaches a confidence of at least 50 percent, although this parameter can be self-adjusted depending on the game situation.

To accomplish all this, DeepQA employs an ensemble of algorithms — about a million lines of code — to gather and score the evidence. These include temporal reasoning algorithms to correlate times with events, statistical paraphrasing algorithms to evaluate semantic context, and geospatial reasoning to correlate locations.

It can also dynamically form associations, both in training and at game time, to connect disparate ideas. For example it can learn that inventors can patent information or that officials can submit resignations. Watson also shifts the weight it assigns to different algorithms based on which ones are delivering the more accurate correlations. This aspect of machine learning allows Watson to get “smarter” the more it plays the game.

The DeepQA programmers have also been refining the algorithms themselves over the past several years. In 2007, Watson could only answer a small fraction of Jeopardy clues with reasonable confidence and even at that, was only correct 47 percent of the time. When forced to answer the majority of the clues, like a grand champion would, it could only answer 15 percent correctly. By IBM’s own admission, Watson was playing “terrible.” The highest performing Jeopardy grand champions, like Jennings and Rutter, typically buzz in on 70 to 80 percent of the entries and give the correct answer 85 to 95 percent of time.

By 2010 Watson started playing at that level. Ferrucci says that while the system can’t buzz in on every question, it can now answer the vast majority of them in competitive time. “We can compete with grand champions in terms of precision, in terms of confidence, and in terms of speed,” he says.

In dozens of practice rounds against former Jeopardy champs, the computer was beating the humans with a 65 percent win rate. Watson also prevailed in a 15-question round against Jennings and Rutter in early January of this year. See the performance below.

None of this is a guarantee that Watson will prevail next week. But even if the machine just makes a decent showing, IBM will have pulled off quite possibly the best product placement in television history. Open domain question answering is not only one of the Holy Grails of artificial intelligence but has enormous potential for commercial applications. In areas as disparate as healthcare, tech support, business intelligence, security and finance, this type of platform could change those businesses irrevocably. John Kelly, senior vice president and director of IBM Research, boasts, “We’re going to revolutionize industries at a level that has never been done before.”

In the case of healthcare, it’s not a huge leap to imagine “expert” question answering systems helping doctors with medical diagnosis. A differential diagnosis is not much different from what Watson does when it analyzes a Jeopardy clue. Before it replaces Dr. House, though, the machine will have to prove itself in the game show arena.

If Jennings and Rutter defeat the supercomputer this time around, IBM will almost certainly ask for a rematch, as it did when Deep Blue initially lost its first chess match with Kasparov in 1996. The engineers will keep stroking the code and retraining the computer until Watson is truly unbeatable. Eventually the machine will prevail.

—–

For a broader discussion on this topic between the author and InterSect360 Research CEO Addison Snell, download this week’s HPCwire Soundbite podcast.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This