The Curse of Smarter Machines

By Michael Feldman

February 10, 2011

This upcoming Jeopardy showdown between IBM Watson and grand champions Ken Jennings and Brad Rutter should make for great TV, especially for those of us who love to see cutting-edge computers in action. But if the machine performs as promised, the spectacle will demonstrate an uncomfortable truth: as machines get more adept at human-like calculation, even highly-skilled experts could become redundant.

With the ability to understand language, learn from experience and perform sophisticated analytics, Watson aims particularly high in this regard. Although the Jeopardy contest is just a PR demonstration, IBM has its eye on moving the technology into the commercial realm for things like business intelligence, financial analytics, medical diagnostics, and a host of other lucrative applications.

The human counterparts for these types of jobs tend to be well-educated and well-compensated individuals. And these “smart” machines are not all that expensive. A computer like Watson would probably cost in the neighborhood of $5 million today. That’s hardware only — we can only imagine what IBM would charge for the software, which is the real value add here. Even at $5M-plus, being able to replace one or more five-figure salaries with a machine that can work 24/7 would still be tempting.

To be fair, the Watson technology is not at a point where it could actually take the place of a medical diagnostician or a stock portfolio manager. Rather it would act as a support tool that could greatly magnify the performance of those individuals. The idea would be for a single analyst to perform the work of a dozen.

IT writer Nicholas Carr has expounded on this subject at length in his books and online blog. His take is that the advance of information technology is displacing the modern workforce at a rapid rate, just as the industrial revolution did for manual labor in the 18th and 19th centuries. And as the machines become more sophisticated, ever more highly-skilled jobs are being threatened.

In a 2007 blog post Carr writes:

In the past information technology tended to reduce demand for low-skilled jobs but increase demand for higher-skilled specialists. Now, automation is moving up the skills ladder, as the Internet and sophisticated software combine to reduce the need for more categories of knowledge and creative workers. One has to wonder what new categories of employment will expand to absorb the losses.

In another post he zeros in on software:

[I]f you look at more recent trends, you see that software is becoming increasingly more adept at taking over work that has traditionally required relatively high skills – or even, in YouTube’s case, enabling the creation of sophisticated goods through the large-scale and automated harvesting of free labor. The next wave of “superstars” may be algorithms – and the small number of people that control them.

Carr isn’t the only one to notice this. He cites a number of economists who have hypothesized that tech advancements may be one of the primary causes of the concentration of wealth for top earners. Fed chair Ben Bernanke noted that new technologies tend to increase the productivity of highly-skilled workers, and thus their wages, compared to lower-skilled workers.

“Considerable evidence supports the view that worker skills and advanced technology are complementary,” says Bernanke. “For example, economists have found that industries and firms that spend more on research and development or invest more in information technologies hire relatively more high-skilled workers and spend a relatively larger share of their payrolls on them.”

That would suggest that we just need to develop an increasingly higher-skilled workforce to keep pace with technological innovation. But a funny thing happens on the way up the food chain. The structure is really a pyramid, with fewer and fewer positions as you approach the top. For example, if you replace a maid with a robot, a single technician would be able to maintain many robots. So you just can’t retrain the maids to be technicians. The same would go for analysts as they get displaced by smart machines.

Today many economists are concerned about how slowly employment is recovering after the Great Recession. Sure enough, as the economic slide ended, productivity surged as companies discovered new ways to run their businesses with fewer people. I suspect a lot of that productivity surge was the result of more IT deployment rather than longer work hours. In many cases, businesses cut work hours to reduce costs.

So what happened to all the displaced workers from the recession? Well many are still looking for a path back into the workforce, while others have given up entirely.

Here’s an interesting graphic from the Bureau of Labor Statistics that shows the recovery of employment after the last six economic downturns:

Although the March 2010 New York Times article that cites this graph is making a point about the lag in re-employment, the more interesting fact is that the lag times appear to be lengthening significantly with each successive recession, regardless of the severity. That would suggest that job seekers are finding it increasingly difficult to return to work with each passing year. It’s not unreasonable to imagine that the inability of workers to keep pace with technology advancements is playing a role here.

If true, at some point that lag will be so long that employment won’t recover before the next recession hits. And then what? Well, we better hope that those new categories of employment Carr wonders about will actually come to pass.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This