The Curse of Smarter Machines

By Michael Feldman

February 10, 2011

This upcoming Jeopardy showdown between IBM Watson and grand champions Ken Jennings and Brad Rutter should make for great TV, especially for those of us who love to see cutting-edge computers in action. But if the machine performs as promised, the spectacle will demonstrate an uncomfortable truth: as machines get more adept at human-like calculation, even highly-skilled experts could become redundant.

With the ability to understand language, learn from experience and perform sophisticated analytics, Watson aims particularly high in this regard. Although the Jeopardy contest is just a PR demonstration, IBM has its eye on moving the technology into the commercial realm for things like business intelligence, financial analytics, medical diagnostics, and a host of other lucrative applications.

The human counterparts for these types of jobs tend to be well-educated and well-compensated individuals. And these “smart” machines are not all that expensive. A computer like Watson would probably cost in the neighborhood of $5 million today. That’s hardware only — we can only imagine what IBM would charge for the software, which is the real value add here. Even at $5M-plus, being able to replace one or more five-figure salaries with a machine that can work 24/7 would still be tempting.

To be fair, the Watson technology is not at a point where it could actually take the place of a medical diagnostician or a stock portfolio manager. Rather it would act as a support tool that could greatly magnify the performance of those individuals. The idea would be for a single analyst to perform the work of a dozen.

IT writer Nicholas Carr has expounded on this subject at length in his books and online blog. His take is that the advance of information technology is displacing the modern workforce at a rapid rate, just as the industrial revolution did for manual labor in the 18th and 19th centuries. And as the machines become more sophisticated, ever more highly-skilled jobs are being threatened.

In a 2007 blog post Carr writes:

In the past information technology tended to reduce demand for low-skilled jobs but increase demand for higher-skilled specialists. Now, automation is moving up the skills ladder, as the Internet and sophisticated software combine to reduce the need for more categories of knowledge and creative workers. One has to wonder what new categories of employment will expand to absorb the losses.

In another post he zeros in on software:

[I]f you look at more recent trends, you see that software is becoming increasingly more adept at taking over work that has traditionally required relatively high skills – or even, in YouTube’s case, enabling the creation of sophisticated goods through the large-scale and automated harvesting of free labor. The next wave of “superstars” may be algorithms – and the small number of people that control them.

Carr isn’t the only one to notice this. He cites a number of economists who have hypothesized that tech advancements may be one of the primary causes of the concentration of wealth for top earners. Fed chair Ben Bernanke noted that new technologies tend to increase the productivity of highly-skilled workers, and thus their wages, compared to lower-skilled workers.

“Considerable evidence supports the view that worker skills and advanced technology are complementary,” says Bernanke. “For example, economists have found that industries and firms that spend more on research and development or invest more in information technologies hire relatively more high-skilled workers and spend a relatively larger share of their payrolls on them.”

That would suggest that we just need to develop an increasingly higher-skilled workforce to keep pace with technological innovation. But a funny thing happens on the way up the food chain. The structure is really a pyramid, with fewer and fewer positions as you approach the top. For example, if you replace a maid with a robot, a single technician would be able to maintain many robots. So you just can’t retrain the maids to be technicians. The same would go for analysts as they get displaced by smart machines.

Today many economists are concerned about how slowly employment is recovering after the Great Recession. Sure enough, as the economic slide ended, productivity surged as companies discovered new ways to run their businesses with fewer people. I suspect a lot of that productivity surge was the result of more IT deployment rather than longer work hours. In many cases, businesses cut work hours to reduce costs.

So what happened to all the displaced workers from the recession? Well many are still looking for a path back into the workforce, while others have given up entirely.

Here’s an interesting graphic from the Bureau of Labor Statistics that shows the recovery of employment after the last six economic downturns:

Although the March 2010 New York Times article that cites this graph is making a point about the lag in re-employment, the more interesting fact is that the lag times appear to be lengthening significantly with each successive recession, regardless of the severity. That would suggest that job seekers are finding it increasingly difficult to return to work with each passing year. It’s not unreasonable to imagine that the inability of workers to keep pace with technology advancements is playing a role here.

If true, at some point that lag will be so long that employment won’t recover before the next recession hits. And then what? Well, we better hope that those new categories of employment Carr wonders about will actually come to pass.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This