The Cloud-Enabled Space Weather Platform

By Everett Toews

February 14, 2011

Space weather is the result of solar winds interacting with the Earth’s magnetosphere. The most visible effect of space weather is the phenomenon of the Aurora Borealis (i.e. the Northern Lights). Space weather research is diverse in scope and includes, among a host of related questions to explore, the study of the impact of space weather on satellites orbiting Earth. Now more than ever scientists require a scalable, robust platform to study the magnetosphere.

The purpose of the Cloud-Enabled Space Weather Platform (CESWP) project is to bring the power and flexibility of cloud computing to space weather physicists.

The goal is to lower the barriers for the physicists to conduct their science–that is, to make it easier to collaborate with other scientists, develop space weather models, run simulations, produce visualizations and enable provenance. Success of the project is measured by the broad acceptance and use of the platform by the space weather science community.

The community of platform users includes space weather physicists who are developing models to help us better understand space weather and the magnetosphere. The principal investigator for CESWP is Dr. Robert Rankin, Professor in the Department of Physics at the University of Alberta. In addition to the University of Alberta, the institutions that are connected are Peking University, the University of California Los Angeles (UCLA), the University of New Brunswick, and Sharcnet, which is a high performance computing center run out of the University of Windsor. The availability zone at the University of Alberta acts as the CESWP Cloud Controller, initially handling all requests to operate on cloud resources.

The CESWP application itself is running in a virtual machine on a node controller in the CESWP cloud. Users visit the application as they would any normal web site from a web browser on their desktop machine, laptop, tablet or smart phone. Users of the cloud platform are presented with a view that is a simple HTML web page rendered in their browser and interact with the application by submitting requests to the controller from the view. Depending on the nature of the request, the controller may load models from the database or initiate an asynchronous call to the CloudService to perform a cloud-based operation. The results of the request are then passed to a view, which is sent back to the users as the response.

In essence, this project is building a cloud for this international community of physicists and given the nature of cloud computing, infrastructure can be geographically distributed. For the purposes of this project, a wide area network (WAN) is required to carry the traffic. For the Cloud-Enabled Space Weather Platform (CESWP), Canada’s Advanced Research and Innovation Network (CANARIE) fills this role. CANARIE is a dedicated network of high-speed, fiber optic cable that stretches across Canada and links researchers throughout Canada and around the world.

To operate an IaaS cloud you require a software framework on which it will run. For CESWP, Eucalyptus was initially selected as the cloud framework but the Virtual Computing Lab, OpenNebula, Nimbus and Eucalyptus were also considered during the survey of cloud management software at the project outset during the end of 2009.

Ultimately, Eucalyptus was selected based on both technical merits and long-term prospects. Among the technical reasons was its support for the Kernel Virtual Machine (KVM) and the Amazon Web Services (AWS) application programming interface (API). Support for the AWS API was particularly attractive, as the option to operate as a hybrid cloud with AWS was important.

Infrastructure as a Service is a complex issue and, as a consequence, Eucalyptus is a complex piece of software. Eucalyptus provided an environment to experiment with IaaS, however, given that IaaS is still a relatively green field, new prospects, such as OpenStack, did not exist at the time of the initial survey even though they still warrant an evaluation.

The scientists can connect to their virtual machines via secure shell (SSH) or NoMachine.  NoMachine is remote access software with support for a graphical user interface (GUI). This means that researchers can use NoMachine to access their VMs and be presented with a GUI desktop as if they were sitting in front of a physical machine. NoMachine has been of significant value to the CESWP project and for these purposes has been a good choice for connecting to cloud based VMs with a graphical user interface.

To ease the interaction with the CESWP cloud a web application written in Groovy and Grails was developed. Groovy is an open source dynamic language for the Java Virtual Machine that is fully compatible with the Java language itself. Grails is an open source web application framework that applies principles like convention over configuration to improve development productivity.
To develop CESWP, the team followed the principles of Scrum. Scrum is an agile software development methodology focused on the iterative development of a product. Iterations are organized into a three-week “sprint” wherein the team creates a working product increment. That product increment is delivered to the researchers as a demonstration in order to solicit feedback.

Technically speaking, CESWP itself is composed of three distinct parts. First, there is the CESWP cloud.  The cloud is comprised of servers, network and Eucalyptus. These resources combine together to provide the Infrastructure as a Service that the physicists will use to conduct their science.

Second, there is the CESWP toolkit. This toolkit is included on every VM image in the cloud and is comprised of scripts, both bash and Python, which ease interaction with the CESWP cloud.  These scripts perform such functions as running simulations in parallel to perform parameter sweeps, bundling VM images and enabling provenance.

Third, there is the CESWP application. The application is primarily developed with of the Groovy programming language, the Grails web framework and the Scrum agile development methodology. These resources combine together to create a GUI web application with a wizard-based interface that the physicists will use to interact with the CESWP cloud.

The primary motivation of the Cloud-Enabled Space Weather Platform is to lower the barriers for the physicists to conduct their science. There are a number of factors that obstruct the space weather physicists from concentrating on their science. The CESWP cloud paired with the CESWP application and toolkit addresses each of these barriers.

First, the specification and acquisition of hardware is consolidated in the CESWP cloud. Instead of specifying and purchasing desktop or server hardware for individual researchers on a piecemeal basis, the purchasing can be done in bulk for the benefit of the entire group. The procurement of this bulk hardware could still take weeks or months but is done only once per period as opposed to multiplying this effort for every researcher whenever the need arises.

Second, the maintenance of the hardware is consolidated in the CESWP cloud. Naturally, the scientists will always require hardware with which to access the cloud resources. However, there will no longer be a need for each researcher to have a laptop on which to develop their models and a high-powered desktop machine on which to run their simulations. The cloud effectively replaces the need for each researcher to maintain separate sets of hardware.

Third, the CESWP cloud has currently limited the selection of operating systems to Ubuntu and CentOS on the virtual machine images. This prevents a proliferation of operating systems and enables the cloud administrator to focus support effort on these two. In our experience, the physicists do not particularly care what operating system they are running, as long as it comes with the precompiled and preconfigured software that they prefer to use so we tailored the operating system VM images built for our community of users.

Fourth, one of the most time consuming aspects of the scientists work is getting code to compile properly. Be it their code when they have moved to a new machine or the code of a framework or tool they would like to use. The CESWP cloud can reduce the amount of time consumed in both cases. Once a researcher has compiled their own code in a VM, they can then bundle that VM into another VM image. The new image can be instantiated any number of times without having to recompile the code.  Likewise, once a framework (e.g. the Space Weather Modeling Framework) or tool has been compiled on a VM, it to can be bundled and made available to all of the physicists without recompilation.

Fifth, when a researcher’s model has reached a certain level of maturity he may want to run that model as a simulation on a grid or cluster to take advantage of high performance computing.  This is of great benefit to the researchers as their code can be processed many times more quickly than on their local machine. However, grid resources are in high demand and, therefore, scientists often must submit their jobs to a queue in order to be processed. The wait time can be hours to weeks. Instead, utilizing the CESWP toolkit, the researchers can run their simulations on the CESWP cloud now. If the CESWP cloud is low on resources the researchers can burst onto the Amazon Web Services (AWS) cloud, for a price.

In addition to lowering barriers CESWP also enables global access to a researcher’s virtual machine and access to their VM from a variety of devices. By default the virtual machines are globally accessible via secure channels. The VMs can be secured with either usernames and passwords or usernames and private keys. All traffic to and from the VM is encrypted. This global access can come from a variety of devices such as smart phones, tablets, laptops, netbooks or desktops.  Global access also enables collaboration as the researcher’s colleagues can be invited to access the VM to share data and collaborate on model development.

The space weather physics community is internationally distributed. Having cloud computing resources geographically close to its users lowers latency. This improves their experience interacting with the cloud. In addition, having all of the researchers using a single internationally distributed cloud will make it easier to share resources and collaborate.

Provenance is also enabled in the CESWP cloud. When a VM is bundled for provenance, using the CESWP toolkit, all of a physicist’s model code and data are bundled along with it. That is, the virtual machine’s file system is saved into another VM image. Also, a snapshot is taken of all of the virtual machine’s attached storage.Thus the preserved instance becomes a reproducible record of the scientists work. It is exact, complete, and unambiguous.

Work continues on Cloud-Enabled Space Weather Platform. The CESWP application is at the prototype stage and requires further refinement for production usage. The CESWP toolkit has only begun and scripts are routinely being added to enhance its utility. Naturally, we would like to expand the CESWP cloud by adding compute and storage capacity. The projected date for putting the Cloud-Enabled Space Weather Platform into production is June 2011.

Although this is the Cloud-Enabled Space Weather Platform, what we are building is not necessarily specific to space weather. Ultimately, we hope to build a platform that could potentially be used by other scientific disciplines.

About the Author

Everett Toews received his Bachelor of Science in Computing Science from the University of Alberta and has been working in the software development industry for the past decade. 

Everett has been working at Cybera for the past year and a half where he is building a cloud for use by space weather physicists at the University of Alberta on a project that goes by the name CESWP.

More available about Cybera can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This