The Cloud-Enabled Space Weather Platform

By Everett Toews

February 14, 2011

Space weather is the result of solar winds interacting with the Earth’s magnetosphere. The most visible effect of space weather is the phenomenon of the Aurora Borealis (i.e. the Northern Lights). Space weather research is diverse in scope and includes, among a host of related questions to explore, the study of the impact of space weather on satellites orbiting Earth. Now more than ever scientists require a scalable, robust platform to study the magnetosphere.

The purpose of the Cloud-Enabled Space Weather Platform (CESWP) project is to bring the power and flexibility of cloud computing to space weather physicists.

The goal is to lower the barriers for the physicists to conduct their science–that is, to make it easier to collaborate with other scientists, develop space weather models, run simulations, produce visualizations and enable provenance. Success of the project is measured by the broad acceptance and use of the platform by the space weather science community.

The community of platform users includes space weather physicists who are developing models to help us better understand space weather and the magnetosphere. The principal investigator for CESWP is Dr. Robert Rankin, Professor in the Department of Physics at the University of Alberta. In addition to the University of Alberta, the institutions that are connected are Peking University, the University of California Los Angeles (UCLA), the University of New Brunswick, and Sharcnet, which is a high performance computing center run out of the University of Windsor. The availability zone at the University of Alberta acts as the CESWP Cloud Controller, initially handling all requests to operate on cloud resources.

The CESWP application itself is running in a virtual machine on a node controller in the CESWP cloud. Users visit the application as they would any normal web site from a web browser on their desktop machine, laptop, tablet or smart phone. Users of the cloud platform are presented with a view that is a simple HTML web page rendered in their browser and interact with the application by submitting requests to the controller from the view. Depending on the nature of the request, the controller may load models from the database or initiate an asynchronous call to the CloudService to perform a cloud-based operation. The results of the request are then passed to a view, which is sent back to the users as the response.

In essence, this project is building a cloud for this international community of physicists and given the nature of cloud computing, infrastructure can be geographically distributed. For the purposes of this project, a wide area network (WAN) is required to carry the traffic. For the Cloud-Enabled Space Weather Platform (CESWP), Canada’s Advanced Research and Innovation Network (CANARIE) fills this role. CANARIE is a dedicated network of high-speed, fiber optic cable that stretches across Canada and links researchers throughout Canada and around the world.

To operate an IaaS cloud you require a software framework on which it will run. For CESWP, Eucalyptus was initially selected as the cloud framework but the Virtual Computing Lab, OpenNebula, Nimbus and Eucalyptus were also considered during the survey of cloud management software at the project outset during the end of 2009.

Ultimately, Eucalyptus was selected based on both technical merits and long-term prospects. Among the technical reasons was its support for the Kernel Virtual Machine (KVM) and the Amazon Web Services (AWS) application programming interface (API). Support for the AWS API was particularly attractive, as the option to operate as a hybrid cloud with AWS was important.

Infrastructure as a Service is a complex issue and, as a consequence, Eucalyptus is a complex piece of software. Eucalyptus provided an environment to experiment with IaaS, however, given that IaaS is still a relatively green field, new prospects, such as OpenStack, did not exist at the time of the initial survey even though they still warrant an evaluation.

The scientists can connect to their virtual machines via secure shell (SSH) or NoMachine.  NoMachine is remote access software with support for a graphical user interface (GUI). This means that researchers can use NoMachine to access their VMs and be presented with a GUI desktop as if they were sitting in front of a physical machine. NoMachine has been of significant value to the CESWP project and for these purposes has been a good choice for connecting to cloud based VMs with a graphical user interface.

To ease the interaction with the CESWP cloud a web application written in Groovy and Grails was developed. Groovy is an open source dynamic language for the Java Virtual Machine that is fully compatible with the Java language itself. Grails is an open source web application framework that applies principles like convention over configuration to improve development productivity.
To develop CESWP, the team followed the principles of Scrum. Scrum is an agile software development methodology focused on the iterative development of a product. Iterations are organized into a three-week “sprint” wherein the team creates a working product increment. That product increment is delivered to the researchers as a demonstration in order to solicit feedback.

Technically speaking, CESWP itself is composed of three distinct parts. First, there is the CESWP cloud.  The cloud is comprised of servers, network and Eucalyptus. These resources combine together to provide the Infrastructure as a Service that the physicists will use to conduct their science.

Second, there is the CESWP toolkit. This toolkit is included on every VM image in the cloud and is comprised of scripts, both bash and Python, which ease interaction with the CESWP cloud.  These scripts perform such functions as running simulations in parallel to perform parameter sweeps, bundling VM images and enabling provenance.

Third, there is the CESWP application. The application is primarily developed with of the Groovy programming language, the Grails web framework and the Scrum agile development methodology. These resources combine together to create a GUI web application with a wizard-based interface that the physicists will use to interact with the CESWP cloud.

The primary motivation of the Cloud-Enabled Space Weather Platform is to lower the barriers for the physicists to conduct their science. There are a number of factors that obstruct the space weather physicists from concentrating on their science. The CESWP cloud paired with the CESWP application and toolkit addresses each of these barriers.

First, the specification and acquisition of hardware is consolidated in the CESWP cloud. Instead of specifying and purchasing desktop or server hardware for individual researchers on a piecemeal basis, the purchasing can be done in bulk for the benefit of the entire group. The procurement of this bulk hardware could still take weeks or months but is done only once per period as opposed to multiplying this effort for every researcher whenever the need arises.

Second, the maintenance of the hardware is consolidated in the CESWP cloud. Naturally, the scientists will always require hardware with which to access the cloud resources. However, there will no longer be a need for each researcher to have a laptop on which to develop their models and a high-powered desktop machine on which to run their simulations. The cloud effectively replaces the need for each researcher to maintain separate sets of hardware.

Third, the CESWP cloud has currently limited the selection of operating systems to Ubuntu and CentOS on the virtual machine images. This prevents a proliferation of operating systems and enables the cloud administrator to focus support effort on these two. In our experience, the physicists do not particularly care what operating system they are running, as long as it comes with the precompiled and preconfigured software that they prefer to use so we tailored the operating system VM images built for our community of users.

Fourth, one of the most time consuming aspects of the scientists work is getting code to compile properly. Be it their code when they have moved to a new machine or the code of a framework or tool they would like to use. The CESWP cloud can reduce the amount of time consumed in both cases. Once a researcher has compiled their own code in a VM, they can then bundle that VM into another VM image. The new image can be instantiated any number of times without having to recompile the code.  Likewise, once a framework (e.g. the Space Weather Modeling Framework) or tool has been compiled on a VM, it to can be bundled and made available to all of the physicists without recompilation.

Fifth, when a researcher’s model has reached a certain level of maturity he may want to run that model as a simulation on a grid or cluster to take advantage of high performance computing.  This is of great benefit to the researchers as their code can be processed many times more quickly than on their local machine. However, grid resources are in high demand and, therefore, scientists often must submit their jobs to a queue in order to be processed. The wait time can be hours to weeks. Instead, utilizing the CESWP toolkit, the researchers can run their simulations on the CESWP cloud now. If the CESWP cloud is low on resources the researchers can burst onto the Amazon Web Services (AWS) cloud, for a price.

In addition to lowering barriers CESWP also enables global access to a researcher’s virtual machine and access to their VM from a variety of devices. By default the virtual machines are globally accessible via secure channels. The VMs can be secured with either usernames and passwords or usernames and private keys. All traffic to and from the VM is encrypted. This global access can come from a variety of devices such as smart phones, tablets, laptops, netbooks or desktops.  Global access also enables collaboration as the researcher’s colleagues can be invited to access the VM to share data and collaborate on model development.

The space weather physics community is internationally distributed. Having cloud computing resources geographically close to its users lowers latency. This improves their experience interacting with the cloud. In addition, having all of the researchers using a single internationally distributed cloud will make it easier to share resources and collaborate.

Provenance is also enabled in the CESWP cloud. When a VM is bundled for provenance, using the CESWP toolkit, all of a physicist’s model code and data are bundled along with it. That is, the virtual machine’s file system is saved into another VM image. Also, a snapshot is taken of all of the virtual machine’s attached storage.Thus the preserved instance becomes a reproducible record of the scientists work. It is exact, complete, and unambiguous.

Work continues on Cloud-Enabled Space Weather Platform. The CESWP application is at the prototype stage and requires further refinement for production usage. The CESWP toolkit has only begun and scripts are routinely being added to enhance its utility. Naturally, we would like to expand the CESWP cloud by adding compute and storage capacity. The projected date for putting the Cloud-Enabled Space Weather Platform into production is June 2011.

Although this is the Cloud-Enabled Space Weather Platform, what we are building is not necessarily specific to space weather. Ultimately, we hope to build a platform that could potentially be used by other scientific disciplines.

About the Author

Everett Toews received his Bachelor of Science in Computing Science from the University of Alberta and has been working in the software development industry for the past decade. 

Everett has been working at Cybera for the past year and a half where he is building a cloud for use by space weather physicists at the University of Alberta on a project that goes by the name CESWP.

More available about Cybera can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This