The Weekly Top Five

By Tiffany Trader

February 17, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover Watson’s university friends, RWTH Aachen University’s new Bull supercomputer, the University of Florida’s reconfigurable supercomputer, NICS Puppet installation, and Web-style visualizations.

Eight Universities Contribute to Watson’s Smarts

“It takes a village” is a popular quote, but in order to develop the advanced level of natural language processing demonstrated by IBM’s Watson supercomputer, it really does require the participation of the greater research community. So it’s only natural that eight major universities were working alongside IBM researchers to cultivate the Question Answering (QA) technology behind the “Watson” computing system. The group’s efforts were rewarded this week when Watson proved its mettle against human champions, winning the Jeopardy! exhibition match handily.

The list of collaborators includes Massachusetts Institute of Technology (MIT), University of Texas at Austin, University of Southern California (USC), Rensselaer Polytechnic Institute (RPI), University at Albany (UAlbany), University of Trento (Italy), University of Massachusetts Amherst, and Carnegie Mellon University.

Dr. David Ferrucci, leader of the IBM Watson project team, commented on the partnership:

“We are glad to be collaborating with such distinguished universities and experts in their respective fields who can contribute to the advancement of QA technologies that are the backbone of the IBM Watson system. The success of the Jeopardy! challenge will break barriers associated with computing technology’s ability to process and understand human language, and will have profound effects on science, technology and business.”

The official announcement provides a summary of each group’s accomplishments.

RWTH Aachen University Hearts Bull

On Valentine’s Day, the North Rhine-Westphalia Technical (RWTH) University showed its love for Bull when it placed an order for one of the company’s bullx supercomputers. RWTH University in Aachen will use the additional computing power to facilitate scientific advances in variety of fields, including engineering, physical sciences, chemistry, biology, mathematics and computer science.

The 300-teraflop system features over 28,000 Intel cores and three petabytes of disk storage. It was designed as a two-part system to facillitate parallelization. According to the release, the massively parallel section (MPI) includes 1,350 nodes with a total of 16,200 cores, while the SMP (symmetrical multiprocessing) section includes 11,456 cores, grouped into 181 supernodes. Each supernode is equipped with 64 cores with high-capacity shared memory. These nodes are in turn grouped into a large-scale cluster that can be programmed along with the MPI.

This level of computing power is necessary if scientists are to enact realistic simulations. Professor Christian Bischof, director of the Center for Computing and Communication and holder of the chair in Scientific Computing at RWTH Aachen University, expounds on the many benefits to science and technology, which include “understanding natural phenomena more accurately, discovering new raw materials or developing new technical processes.”

The project partners have also made a committment to “Green IT” and will be working to optimize the efficiency of supercomputer processing. The softare-based approach will enable each operation to use less energy without adversely affecting performance. Considering a typical system consumes almost a megawatt of power, or about 200 households worth, there’s an environmental and economic incentive. It’s no surprise that increasing energy-efficiency has the added bonus of reducing operating costs.

If all goes according to schedule, the system will be delivered next month and will be up and running in May.

University of Florida Leads Pack in Reconfigurable Computing

The University of Florida is proclaiming itself as a leader in reconfigurable supercomputering. At the center of the claim is the university’s Novo-G supercomputer, the world’s fastest according to university officials. Although it relies on a different chip design, Novo-G can process certain applications faster than the Chinese Tianhe-1A system touted as world’s fastest, according the the most recent TOP500 list.

The TOP500 list does not include systems like Novo-G, which rely on the power of Field-programmable Gate Arrays (FPGAs) instead of so-called fixed-logic hardware structures like the more common CPU.

Reconfigurable machines, which rely on adaptive hardware customizations, are a fairly new innovation. FPGAs adapt to match the unique needs of each application, leading to increased speed and reduced energy requirements.

Alan George, professor of electrical and computer engineering, and director of the National Science Foundation’s Center for High-Performance Reconfigurable Computing, known as CHREC, explains that “it is very difficult to accurately rank supercomputers because it depends upon what you want them to do.”

Powered by 192 reconfigurable processors, Novo-G tackles a host of applications well-suited to the machine’s unique design. Scientists use the system to bolster research in fields such as health and life sciences, signal and image processing, and financial science.

A planned upgrade, scheduled for later this year, will double the reconfigurable capacity of Novo-G. University officials note that the upgrade requires “a modest increase in size, power, and cooling, unlike upgrades with conventional supercomputers.”

Puppet Pulls Strings on NICS Infrastructure

The National Institute for Computational Science (NICS) relies on Puppet to manage its many systems, including Kraken, the first academic petaflop supercomputer and the eighth top-rated system in the world. With Puppet, NICS can ensure the performance and security of its high-end computing resources.

Kraken, NICS flagship Cray XT5 system, contains 112,896 compute cores, 129 terabytes of memory, and 3.3 petabytes of raw disk space. The 1.7 petaflop supercomputer is accessed by 2,000 active researchers and contributes more than 700 million CPU hours per year to the TeraGrid.

Puppet gives NICS administators centralized control of their resources, which lets them apply system changes consistently to uphold security measures. Puppet has also significantly reduced server deployment times. Before, administrators had to maintain each server individually, a time-consuming process. With Puppet, what used to be a four to six hour job now takes just an hour. The saved time can be devoted to more important tasks, like maintaining an efficient infrastructure and staying abreast of updates and advances in technology.

Stephen McNally, HPC administrator with NICS, expressed satisfaction with the management system. “Twelve months ago we had no standard for managing our infrastructure; Puppet is now the standard. Our machines don’t go up until they’re in Puppet, tested, and working,” he said.

Web-Style Visualizations Promise More Meaningful Data

Rensselaer Polytechnic Institute Web experts Peter Fox and James Hendler are asking scientists to take a page from the Web when presenting their data. The two professors have written a perspective piece titled “Changing the Equation on Scientific Data Visualization” in which they recommend a new strategy for scientific visualizations, one that relies on the World Wide Web for inspiration.

That visualizations help unlock the mysteries of complex data is not being disputed, but Fox and Hendler believe they could be used more effectively.

The problem with the current use of visualization in the scientific community, according to [the duo], is that when visualizations are actually included by scientists, they are often an end product of research used to simply illustrate the results and are inconsistently incorporated into the entire scientific process. Their visualizations are also static and cannot be easily updated or modified when new information arises.

The Web provides a wealth of easy-to-use visualizations that scientists could use to add meaning to the data throughout the research process. Also these Web-based tools tend to be inexpensive, simple to use and easy to modify. For example, as new information comes in, the scenarios can be updated, which is often difficult when using more complex design tools.

According to the university announcement, “[s]imple Web-based visualization tool kits allow users to easily create maps, charts, graphs, word clouds, and other custom visualizations at little to no cost and with a few clicks of a mouse. In addition, Web links and RSS feeds allow visualizations on the Web to be updated with little to no involvement from the original developer of the visualization, greatly reducing the time and cost of the effort, but also keeping it dynamic.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This