Azure Use Case Highlights Challenges for HPC Applications in the Cloud

By Vedaprakash Subramanian; Hongyi Ma; Liqiang Wang; En-Jui Lee; Po Chen

February 21, 2011

Currently, HPC has been making a transition to the cloud computing paradigm shift. Many HPC users are porting their applications to cloud platforms. Cloud provides some major benefits, including scalability, elasticity, the illusion of infinite resources, hardware virtualization, and a “pay-as-you-go” pricing model. These benefits seem very attractive not only for general business tasks, but also for HPC applications when compared with setting up and managing dedicated clusters. However, how far these benefits pay off in terms of the performance of HPC applications is still a question.

We recently had the experience of porting an HPC application, Numerical Generation of Synthetic Seismograms, onto Microsoft’s Windows Azure cloud and have generated some opinions to share about some of the challenges ahead for HPC in the cloud.

Numerical generation of synthetic seismogram is an HPC application that generates seismic waves in three dimensional complex geological media by explicitly solving the seismic wave-equation using numerical techniques such as finite-difference, finite-element, and spectral-element methods. The computation of this application is loosely-coupled and the datasets require massive storage. Real-time processing is a critical feature for synthetic seismogram.

When executing such an application on the traditional supercomputers, the submitted jobs often wait for a few minutes or even hours to be scheduled. Although a dedicated computing cluster might be able to make a nearly real-time response, it is not elastic, which means that the response time may vary significantly when the number of service requests changes dramatically.

Given these challenges and due to the elastic nature of the cloud computing, this seems like an ideal solution for our application, which provides much faster response times and the ability to scale up and down according to the requests.

We have ported our synthetic seismogram application to Microsoft’s Windows Azure. As one of the top competing cloud service providers, Azure provides Platform as a service (PaaS) architecture, where users can manage their applications and the execution environments but do not need to control the underlying infrastructure such as networks, servers, operating system, and storage. This helps the developers focus on the applications rather than manage the cloud infrastructures.

Some useful features Windows Azure for HPC provides for applications include the automatic load balancing and checkpointing. Azure divides its storage abstractions into partitions and provides automatic load balancing of partitions across their servers. Azure monitors the usage pattern of the partitions and servers and adjusts the grouping or splitting of workload among the servers.

Checkpointing is implemented using progress tables, which support restarting previously failed jobs. These store the intermediate persistent state of a long-running job and record the progress of each step. When there is failure, we can look at the progress table and resume from the failover. The progress table is useful when a compute node fails and its job is taken over by another compute node.
 
Challenges Ahead for HPC in the Cloud

The overall performance of our application on Azure cloud is good when compared to the clusters in terms of the execution time and storage cost. However, there are still many challenges for cloud computing, specifically, for Windows Azure.

Dynamic scalability – The first and foremost problem with Azure is that the scalability is not up to the expectation. In our application, dynamic scalability is a major feature. Dynamic scalability means that according to the response time of the user queries, the compute nodes are scaled up and down dynamically by the application. We set the threshold response time to be 2 milliseconds for queries. If the response time of a query exceeds the threshold, it will request to allocate an additional compute node to cope up with the busy queries. But the allocation of a compute node may take more than 10 minutes. Due to such a delay, the newly allocated compute node cannot handle the busy queries in time. 

These scheduling delays are real concern, which leads to the need of effective and dynamic load management system in order to react in time to the changes of the HPC application requirements. In the other direction, the application scales down the compute nodes if some compute nodes do not have any user queries. The de-allocation of compute nodes on Azure is an asynchronous process. It means that Azure randomly picks one of the compute nodes and de-allocates it. So, the application cannot process the user queries until the de-allocation process is complete, which may slow down the performance.

Low-level control to optimize performance – We did not have good control over the compute nodes. Our application reads user query, splits the job into sub-jobs among compute nodes. Each compute node requests for a set of data from the storage depending on its sub-jobs. If the next user’s query is the same, will the previous set of data be reused? Or will the same process be executed thoroughly again, i.e., request the same set of data from the storage again and do the computation? If each request to the storage takes a latency delay of 15 milliseconds, then will it cost the same latency again?

Even if we move the data from the cloud storage to local storage provided by the compute node to prevent latency delay, there is no guarantee that the next user’s query will be serviced by the same compute node. Because of lacking of low-level control, it is difficult to fully exploit the compute node capacity and maximize the data locality.

Multi-tenancy – We are not sure about how far the compute nodes are dedicated for the application.  As one of the major features of cloud, multi-tenancy is an issue for the application. Multi-tenancy means sharing of the compute nodes among multiple applications. As the number of applications running on the same compute node increases, it will reduce the amount of bandwidth allocated to each application. This might lead to performance degradation over time.

Reliability and fault-tolerance – Reliability is also another concern. On Windows Azure, it is still unknown that how long it takes to replace a failed compute node with a new one. Additionally, it is unclear how hardware failures impact on the performance of the application. These impacts are needed to be studied and taken into consideration while developing the load management system. On PaaS architecture, one of disadvantages is that testing the application against fault tolerance and compute node failures are quite difficult.

Debugging and profiling – Although Windows Azure programs can be developed and debugged locally, Azure’s architecture does not support remote debugging. This might be a problem to develop and deploy complex applications on Azure. Parallel and remote debugging has always been a problem for developing HPC programs. It will be a new issue on cloud computing. Efficient error detection tools, including tracing and replaying, should be provided by cloud computing vendors. Like the traditional HPC platforms, light-weight profiling tools will be very useful for analyzing and tuning performance, which are still missed for the most current cloud computing platforms.

Conclusions

Thus far, we have tried to pinpoint some of the challenges ahead for HPC in the cloud, specifically, Windows Azure. Windows Azure provides a black box architecture which lacks of flexibility to optimize the performance. Some low-level controls are needed for the HPC users to improve the performance of their applications. Though these challenges are based on Azure, they are also applicable for general cloud computing platforms.

About the Authors

Vedaprakash Subramanian is a Master student in the department of Computer Science at University of Wyoming. He received his Bachelor’s degree in Electrical and Electronics at PSG College of Technology, India in 2009. His research focus is in utilizing cloud platform for HPC application and, HPC program reliability, and performance optimization. He is currently working on porting applications for computational seismology to cloud platforms such as Azure and Amazon EC2.

Hongyi Ma is a PhD student in the Department of Computer Science at University of Wyoming. He got his Bachelor’s degree in Computer Science at University of Science and Technology of China, Hefei, China in 2010. His research includes HPC, Programming Errors Detecting.

Liqiang Wang is currently an Assistant Professor in the Department of Computer Science at the University of Wyoming. He received the BS degree in mathematics from Hebei Normal University, China, in 1995, the MS degree in computer science from Sichuan University, China, in 1998, and the PhD degree in computer science from Stony Brook University in 2006. His research interest is the design and analysis of parallel computing systems including cloud computing.

En-Jui Lee is currently a PhD student in the Department of Geology and Geophysics at the University of Wyoming. He received the BS degree in Earth Sciences from National Cheng Kung University, Taiwan, in 2003, and the MS degree in Geological Sciences from SUNY Binghamton University in 2009. His research interest is in computational seismology.

Po Chen is currently an Assistant Professor in the Department of Geology and Geophysics at the University of Wyoming. He received the BS degree in Geophysics from Peking University, China, in 2000, and the PhD degree in Geological Sciences from University of Southern California in 2005. His research interest is in computational seismology.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This