The HPC Gap in US Manufacturing

By Michael Feldman

February 24, 2011

Using high performance computing to help modernize US manufacturing is one of those good ideas that seems inevitable but always just out of reach. A recent study confirms this, and provides a framework for strengthening the HPC landscape in this sector.

Of course some might ask what’s the point of trying to boost manufacturing in the US when the sector only employs about 10 percent of the workforce, a figure that is projected to decline further in the coming years. Also, the use of HPC to make manufacturing more efficient is not likely help the downward employment trend. Employing virtual product design and development and automating other manufacturing processes will probably eliminate more jobs than it creates.

By world standards, the US manufacturing market is already fairly efficient. Despite the relatively few workers employed in the segment, because of its sheer size, US manufacturing dominates world production. Output in 2009 was $2.15 trillion (expressed in 2005 dollars), besting China’s contribution of $1.48 trillion and representing about 20 percent of the world’s manufacturing output.

But the real value of the US manufacturing sector is that it’s at the heart of much of the science and engineering innovation on which the remainder of the economy rests. Today US manufacturers employ more than a third of the country’s engineers and account for 60 percent of all private sector R&D. As such, it creates products that are used by the more lucrative service industries. Think, for example, of all the myriad services that are dependent on the production of computer chips and other electronic devices. Manufacturing, like agriculture before it, is a foundational activity that acts as a catalyst to other business sectors.

Furthermore, according to a recent article in The Atlantic, there is no realistic way to balance US foreign trade that relies exclusively on the service sector. Nor is there a feasible way to employ existing (and future) blue-collar workers without a healthy manufacturing sector.

And healthy it is not — at least from a global perspective. Based on a survey of CEOs conducted by Deloitte and the Council on Competitiveness released in June 2010, the US is ranked fourth in manufacturing competitiveness, behind China, India, and South Korea, and is expected to drop to fifth place, behind Brazil, by 2015. A National Institute of Standards and Technology factsheet recounts the need for the industry to focus on developing technologically-advanced products that can compete in the global marketplace. “There is widespread agreement that rather than engage in a ‘race to the bottom’ for low-wage production facilities, the United States should aim for high-value-added manufacturing opportunities,” says the factsheet.

Moving up the manufacturing foodchain often leads to a much better bottom line, and in some cases, extra jobs. For example, Frank van Mierlo, CEO of 1366 Technologies, claims that the US is in a good position to build a silicon chip industry for solar cells. According to Mierlo, the nation produces around 40 percent of the world’s high grade silicon for both chips and solar cells, which is worth about $1.7 billion. He says if US-based companies turned that silicon into wafers, it would become a $7 billion business and add 50,000 jobs.

That kind of thinking is being embraced by non-profit groups as well. US government agencies, the Council on Competitiveness, and the National Center for Manufacturing Sciences (NCMS) are all big proponents of high-tech solutions. HPC, in particular, is seen as a key driver in upgrading the nation’s manufacturing capabilities. The use of such technology allows engineers and designers to perform prototyping, product design and analysis, product lifecycle management, and product optimization/validation, with much less reliance on physical mockups and testing.

But despite better access to HPC than is generally available in other countries, in the US fewer than 10 percent of manufacturers use this technology — that according to a recent study conducted by InterSect360 Research in conjunction with NCMS. The report surveyed 323 respondents across industry, academic, government and trade organizations in July 2010 to gather a snapshot of digital manufacturing practices and attitudes in the US.

Source: surprisingly it found that top manufacturers were already major users of high performance computing. Based on the survey, 61 percent of companies with over 10,000 employees are using HPC today to model everything from engine parts to product packaging. The numerous case studies of digitally-engineered products at companies like Boeing, Procter & Gamble, and General Motors attest to the acceptance of HPC at these large firms.

Meanwhile, small manufacturers, which by number represent the vast majority of the companies in this sector, have barely touched the surface of high performance computing. Here only 8 percent of businesses with under 100 employees are using such technology. Where modeling and simulation tools are being employed, they’re mostly restricted to desktop systems, representing a sort of poor man’s HPC.

The study found the most significant barriers to adoption were the lack of internal expertise, the cost of software, and to a lesser extent, the cost of hardware. To some degree, though, cost concerns may be a misconception. Over 80 percent of companies that currently use HPC report they spent less than one-third of their IT budgets on HPC — not an insignificant amount, but not an overwhelming expense either.

Importantly, 72 percent of desktop-bound CAE users did see a competitive advantage in adopting more advanced computational technology. In such environments, long simulation times and other software issues (compatibility, robustness, data management) were cited as major limitations.

When asked about the importance of different business drivers — production efficiency, time to market, product novelty, product quality, industry leadership, etc. — the survey takers said all were important, but it was product quality that garnered the most intense response. Since HPC enables iterative product refinement in a virtual design and test environment, that could turn out to be a big selling point for the technology.

In manufacturing, as in most verticals, smaller companies tend to be at a disadvantage when it comes to adopting HPC, and this is certainly reflected by the InterSect360 study. But costs, at least of hardware, are coming down. And software costs, while more worrisome, would likely be no more expensive (or at least not substantially more) on an eight-node cluster than on eight standalone workstations.

What most of these manufacturers require is a low-risk path that allows them to segue into high performance computing. Whether that turns out to be partnerships with HPC-savvy organizations, system vendors who can understand and cater to low-end HPC users, or something else remains to be seen. What seems much more certain is the need for manufacturers in the US to be able to compete at the high end of the market with superior quality products. To do that, companies will need to accept HPC as a foundational technology for their businesses.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This