NVIDIA Broadens CUDA’s Appeal with Latest Toolkit

By Michael Feldman

February 28, 2011

NVIDIA is set to release a new CUDA toolkit to developers this Friday with the 4th generation of its popular GPU software suite. The company says CUDA 4.0 is designed to make parallel programming simpler, thus bringing more application developers into the GPGPU fold. Some of the new capabilities also foreshadow Project Denver, the codename for the company’s future CPU-GPU architecture for workstations, servers, and supercomputers.

The 4.0 toolkit brings with it three new technologies: GPUDirect 2.0 for peer-to-peer communication among graphics chips on the same compute node; Unified Virtual Addressing (UVA) to provide a single address space that melds CPU and GPU memories; and Thrust, a set of C++ library of data structures and algorithms aimed at parallel programming.

According to Sumit Gupta, senior product manager for NVIDIA Tesla GPU Computing Unit, the enhancements are geared toward raising the abstraction level for the GPGPU programmer, making it easier for less GPU-savvy developers to take advantage of the architecture’s high-performance data parallelism. CUDA already has a good deal of traction in the HPC community, and is even becoming well-supported by CAE software vendors like ANSYS, SIMULIA, and ACUSIM. With 4.0, NVIDIA is looking to cast a wider net and bring more mainstream developers into the GPU computing camp.

“The focus for us now is to get more people to use GPUs,” says Gupta. “Clearly, we have a pretty good mindshare in the HPC community at this point. Now it’s just going broader and deeper.”

For example, GPUDirect 2.0, is the second generation of the technology whose original version allowed third-party PCI devices like network adapters and SSDs to bypass the CPU and tap directly into GPU memory. The 1.0 technology is supported by Mellanox and QLogic, who have incorporated the GPUDirect smarts into their respective InfiniBand adapters.

Likewise, the second version of GPUDirect enables multiple GPUs in the same node or workstation to access each other’s memory over the PCI bus, without having to copy data to the system memory. For multi-GPU applications, the new GPUDirect promises both better performance (less copying of data and less CPU overhead) as well as less onerous programming (no routine calls to copy data to back and forth to system memory). According to Gupta, at some future date they’d like to apply this peer-to-peer GPU communication capability out to the cluster interconnect.

Extending the memory abstraction even further is the new Unified Virtual Addressing feature. In this case, CUDA provides a single address space that virtually merges system memory on the CPU side with the memory of one or more connected GPUs.This gives the application a view of all the heterogeneous memories as a single memory space.

Today a developer has to keep track of where data is and explicitly copy data to GPU memory if it’s not there before calling a function that uses the data. With UVA, the function itself can disambiguate where the data is and copy it appropriately. This, in particular, helps libraries become more self-contained and reduces the burden on the application developer.

Similarly for multiple GPUs, functions that use the GPU can now figure out which device the data is on and copy the data between them, instead of the developer “pre-conditioning” or copying the data before calling the function. The general idea here, Gupta says, is speed up the original CPU-to-GPU application port, and let the developers use the tools to work out any needed optimizations.

The UVA feature also has an eye toward the Project Denver architecture, which will integrate ARM CPUs and NVIDIA GPUs on the same chip, presumably making separate physical memory spaces a thing of the past. Thus, all CUDA applications developed with UVA should slide easily onto these heterogeneous platforms. “We always knew the Denver architecture was coming, so we’ve always planned for it in the CUDA programming models,” says Gupta. “Features like Unified Virtual Addressing are meant to extend out to future architectures.”

The other big enhancement in CUDA 4.0 is Thrust, a C++ template library that contains algorithms and data structures aimed at parallel programming. Once again, the idea is raise the abstraction level, in this case, for C++ programmers, so that developing parallelized applications is much more straightforward. Although C++ is not widely employed in traditional HPC (outside its use by quants for financial applications), the language is widely adopted across IT, from the consumer side to the enterprise.

To help boost performance, at compile time Thrust will attempt to choose the fastest code path for the hardware it’s to be run on. In this case, that means it will divide the work between the GPUs and CPUs to maximize throughput — yet another nod to the upcoming Denver architecture. NVIDIA claims Thrust routines such as parallel sorting are 5 to 100 times faster than the corresponding implementations of the Standard Template Library (STL) and Threading Building Blocks (TBB).

Besides the big three enhancements, CUDA 4.0 will also sport some new capabilities like being able to share a GPU with multiple CPU threads. So for example, if you have four threads running on a quad-core CPU, all those threads can drive computations on a single GPU. Previously, you would have needed four GPUs to do this or would have been restricted to executing each thread sequentially on the GPU side. Conversely, CUDA 4.0 will also let you drive multiple GPUs using a single CPU thread.

Also included in the new toolkit is an MPI implementation that automatically moves data to and from the GPU memory over InfiniBand when an application does an MPI send or receive, a new NPP image and computer vision library, an auto performance analysis capability for the Visual Profiler tool, a GPU binary disassembler, and some new features in cuda-gdb debugger.

The CUDA 4.0 toolkit will be released free of charge to registered developers on March 4th. By announcing it a few days in advance, NVIDIA is hoping to attract some new blood into the CUDA Registered Developer Program. No date is set for general release of the toolkit, but usually there’s just a couple of months lag time between the release candidate and the final version.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This