NVIDIA Broadens CUDA’s Appeal with Latest Toolkit

By Michael Feldman

February 28, 2011

NVIDIA is set to release a new CUDA toolkit to developers this Friday with the 4th generation of its popular GPU software suite. The company says CUDA 4.0 is designed to make parallel programming simpler, thus bringing more application developers into the GPGPU fold. Some of the new capabilities also foreshadow Project Denver, the codename for the company’s future CPU-GPU architecture for workstations, servers, and supercomputers.

The 4.0 toolkit brings with it three new technologies: GPUDirect 2.0 for peer-to-peer communication among graphics chips on the same compute node; Unified Virtual Addressing (UVA) to provide a single address space that melds CPU and GPU memories; and Thrust, a set of C++ library of data structures and algorithms aimed at parallel programming.

According to Sumit Gupta, senior product manager for NVIDIA Tesla GPU Computing Unit, the enhancements are geared toward raising the abstraction level for the GPGPU programmer, making it easier for less GPU-savvy developers to take advantage of the architecture’s high-performance data parallelism. CUDA already has a good deal of traction in the HPC community, and is even becoming well-supported by CAE software vendors like ANSYS, SIMULIA, and ACUSIM. With 4.0, NVIDIA is looking to cast a wider net and bring more mainstream developers into the GPU computing camp.

“The focus for us now is to get more people to use GPUs,” says Gupta. “Clearly, we have a pretty good mindshare in the HPC community at this point. Now it’s just going broader and deeper.”

For example, GPUDirect 2.0, is the second generation of the technology whose original version allowed third-party PCI devices like network adapters and SSDs to bypass the CPU and tap directly into GPU memory. The 1.0 technology is supported by Mellanox and QLogic, who have incorporated the GPUDirect smarts into their respective InfiniBand adapters.

Likewise, the second version of GPUDirect enables multiple GPUs in the same node or workstation to access each other’s memory over the PCI bus, without having to copy data to the system memory. For multi-GPU applications, the new GPUDirect promises both better performance (less copying of data and less CPU overhead) as well as less onerous programming (no routine calls to copy data to back and forth to system memory). According to Gupta, at some future date they’d like to apply this peer-to-peer GPU communication capability out to the cluster interconnect.

Extending the memory abstraction even further is the new Unified Virtual Addressing feature. In this case, CUDA provides a single address space that virtually merges system memory on the CPU side with the memory of one or more connected GPUs.This gives the application a view of all the heterogeneous memories as a single memory space.

Today a developer has to keep track of where data is and explicitly copy data to GPU memory if it’s not there before calling a function that uses the data. With UVA, the function itself can disambiguate where the data is and copy it appropriately. This, in particular, helps libraries become more self-contained and reduces the burden on the application developer.

Similarly for multiple GPUs, functions that use the GPU can now figure out which device the data is on and copy the data between them, instead of the developer “pre-conditioning” or copying the data before calling the function. The general idea here, Gupta says, is speed up the original CPU-to-GPU application port, and let the developers use the tools to work out any needed optimizations.

The UVA feature also has an eye toward the Project Denver architecture, which will integrate ARM CPUs and NVIDIA GPUs on the same chip, presumably making separate physical memory spaces a thing of the past. Thus, all CUDA applications developed with UVA should slide easily onto these heterogeneous platforms. “We always knew the Denver architecture was coming, so we’ve always planned for it in the CUDA programming models,” says Gupta. “Features like Unified Virtual Addressing are meant to extend out to future architectures.”

The other big enhancement in CUDA 4.0 is Thrust, a C++ template library that contains algorithms and data structures aimed at parallel programming. Once again, the idea is raise the abstraction level, in this case, for C++ programmers, so that developing parallelized applications is much more straightforward. Although C++ is not widely employed in traditional HPC (outside its use by quants for financial applications), the language is widely adopted across IT, from the consumer side to the enterprise.

To help boost performance, at compile time Thrust will attempt to choose the fastest code path for the hardware it’s to be run on. In this case, that means it will divide the work between the GPUs and CPUs to maximize throughput — yet another nod to the upcoming Denver architecture. NVIDIA claims Thrust routines such as parallel sorting are 5 to 100 times faster than the corresponding implementations of the Standard Template Library (STL) and Threading Building Blocks (TBB).

Besides the big three enhancements, CUDA 4.0 will also sport some new capabilities like being able to share a GPU with multiple CPU threads. So for example, if you have four threads running on a quad-core CPU, all those threads can drive computations on a single GPU. Previously, you would have needed four GPUs to do this or would have been restricted to executing each thread sequentially on the GPU side. Conversely, CUDA 4.0 will also let you drive multiple GPUs using a single CPU thread.

Also included in the new toolkit is an MPI implementation that automatically moves data to and from the GPU memory over InfiniBand when an application does an MPI send or receive, a new NPP image and computer vision library, an auto performance analysis capability for the Visual Profiler tool, a GPU binary disassembler, and some new features in cuda-gdb debugger.

The CUDA 4.0 toolkit will be released free of charge to registered developers on March 4th. By announcing it a few days in advance, NVIDIA is hoping to attract some new blood into the CUDA Registered Developer Program. No date is set for general release of the toolkit, but usually there’s just a couple of months lag time between the release candidate and the final version.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This