NVIDIA Broadens CUDA’s Appeal with Latest Toolkit

By Michael Feldman

February 28, 2011

NVIDIA is set to release a new CUDA toolkit to developers this Friday with the 4th generation of its popular GPU software suite. The company says CUDA 4.0 is designed to make parallel programming simpler, thus bringing more application developers into the GPGPU fold. Some of the new capabilities also foreshadow Project Denver, the codename for the company’s future CPU-GPU architecture for workstations, servers, and supercomputers.

The 4.0 toolkit brings with it three new technologies: GPUDirect 2.0 for peer-to-peer communication among graphics chips on the same compute node; Unified Virtual Addressing (UVA) to provide a single address space that melds CPU and GPU memories; and Thrust, a set of C++ library of data structures and algorithms aimed at parallel programming.

According to Sumit Gupta, senior product manager for NVIDIA Tesla GPU Computing Unit, the enhancements are geared toward raising the abstraction level for the GPGPU programmer, making it easier for less GPU-savvy developers to take advantage of the architecture’s high-performance data parallelism. CUDA already has a good deal of traction in the HPC community, and is even becoming well-supported by CAE software vendors like ANSYS, SIMULIA, and ACUSIM. With 4.0, NVIDIA is looking to cast a wider net and bring more mainstream developers into the GPU computing camp.

“The focus for us now is to get more people to use GPUs,” says Gupta. “Clearly, we have a pretty good mindshare in the HPC community at this point. Now it’s just going broader and deeper.”

For example, GPUDirect 2.0, is the second generation of the technology whose original version allowed third-party PCI devices like network adapters and SSDs to bypass the CPU and tap directly into GPU memory. The 1.0 technology is supported by Mellanox and QLogic, who have incorporated the GPUDirect smarts into their respective InfiniBand adapters.

Likewise, the second version of GPUDirect enables multiple GPUs in the same node or workstation to access each other’s memory over the PCI bus, without having to copy data to the system memory. For multi-GPU applications, the new GPUDirect promises both better performance (less copying of data and less CPU overhead) as well as less onerous programming (no routine calls to copy data to back and forth to system memory). According to Gupta, at some future date they’d like to apply this peer-to-peer GPU communication capability out to the cluster interconnect.

Extending the memory abstraction even further is the new Unified Virtual Addressing feature. In this case, CUDA provides a single address space that virtually merges system memory on the CPU side with the memory of one or more connected GPUs.This gives the application a view of all the heterogeneous memories as a single memory space.

Today a developer has to keep track of where data is and explicitly copy data to GPU memory if it’s not there before calling a function that uses the data. With UVA, the function itself can disambiguate where the data is and copy it appropriately. This, in particular, helps libraries become more self-contained and reduces the burden on the application developer.

Similarly for multiple GPUs, functions that use the GPU can now figure out which device the data is on and copy the data between them, instead of the developer “pre-conditioning” or copying the data before calling the function. The general idea here, Gupta says, is speed up the original CPU-to-GPU application port, and let the developers use the tools to work out any needed optimizations.

The UVA feature also has an eye toward the Project Denver architecture, which will integrate ARM CPUs and NVIDIA GPUs on the same chip, presumably making separate physical memory spaces a thing of the past. Thus, all CUDA applications developed with UVA should slide easily onto these heterogeneous platforms. “We always knew the Denver architecture was coming, so we’ve always planned for it in the CUDA programming models,” says Gupta. “Features like Unified Virtual Addressing are meant to extend out to future architectures.”

The other big enhancement in CUDA 4.0 is Thrust, a C++ template library that contains algorithms and data structures aimed at parallel programming. Once again, the idea is raise the abstraction level, in this case, for C++ programmers, so that developing parallelized applications is much more straightforward. Although C++ is not widely employed in traditional HPC (outside its use by quants for financial applications), the language is widely adopted across IT, from the consumer side to the enterprise.

To help boost performance, at compile time Thrust will attempt to choose the fastest code path for the hardware it’s to be run on. In this case, that means it will divide the work between the GPUs and CPUs to maximize throughput — yet another nod to the upcoming Denver architecture. NVIDIA claims Thrust routines such as parallel sorting are 5 to 100 times faster than the corresponding implementations of the Standard Template Library (STL) and Threading Building Blocks (TBB).

Besides the big three enhancements, CUDA 4.0 will also sport some new capabilities like being able to share a GPU with multiple CPU threads. So for example, if you have four threads running on a quad-core CPU, all those threads can drive computations on a single GPU. Previously, you would have needed four GPUs to do this or would have been restricted to executing each thread sequentially on the GPU side. Conversely, CUDA 4.0 will also let you drive multiple GPUs using a single CPU thread.

Also included in the new toolkit is an MPI implementation that automatically moves data to and from the GPU memory over InfiniBand when an application does an MPI send or receive, a new NPP image and computer vision library, an auto performance analysis capability for the Visual Profiler tool, a GPU binary disassembler, and some new features in cuda-gdb debugger.

The CUDA 4.0 toolkit will be released free of charge to registered developers on March 4th. By announcing it a few days in advance, NVIDIA is hoping to attract some new blood into the CUDA Registered Developer Program. No date is set for general release of the toolkit, but usually there’s just a couple of months lag time between the release candidate and the final version.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This