NVIDIA Broadens CUDA’s Appeal with Latest Toolkit

By Michael Feldman

February 28, 2011

NVIDIA is set to release a new CUDA toolkit to developers this Friday with the 4th generation of its popular GPU software suite. The company says CUDA 4.0 is designed to make parallel programming simpler, thus bringing more application developers into the GPGPU fold. Some of the new capabilities also foreshadow Project Denver, the codename for the company’s future CPU-GPU architecture for workstations, servers, and supercomputers.

The 4.0 toolkit brings with it three new technologies: GPUDirect 2.0 for peer-to-peer communication among graphics chips on the same compute node; Unified Virtual Addressing (UVA) to provide a single address space that melds CPU and GPU memories; and Thrust, a set of C++ library of data structures and algorithms aimed at parallel programming.

According to Sumit Gupta, senior product manager for NVIDIA Tesla GPU Computing Unit, the enhancements are geared toward raising the abstraction level for the GPGPU programmer, making it easier for less GPU-savvy developers to take advantage of the architecture’s high-performance data parallelism. CUDA already has a good deal of traction in the HPC community, and is even becoming well-supported by CAE software vendors like ANSYS, SIMULIA, and ACUSIM. With 4.0, NVIDIA is looking to cast a wider net and bring more mainstream developers into the GPU computing camp.

“The focus for us now is to get more people to use GPUs,” says Gupta. “Clearly, we have a pretty good mindshare in the HPC community at this point. Now it’s just going broader and deeper.”

For example, GPUDirect 2.0, is the second generation of the technology whose original version allowed third-party PCI devices like network adapters and SSDs to bypass the CPU and tap directly into GPU memory. The 1.0 technology is supported by Mellanox and QLogic, who have incorporated the GPUDirect smarts into their respective InfiniBand adapters.

Likewise, the second version of GPUDirect enables multiple GPUs in the same node or workstation to access each other’s memory over the PCI bus, without having to copy data to the system memory. For multi-GPU applications, the new GPUDirect promises both better performance (less copying of data and less CPU overhead) as well as less onerous programming (no routine calls to copy data to back and forth to system memory). According to Gupta, at some future date they’d like to apply this peer-to-peer GPU communication capability out to the cluster interconnect.

Extending the memory abstraction even further is the new Unified Virtual Addressing feature. In this case, CUDA provides a single address space that virtually merges system memory on the CPU side with the memory of one or more connected GPUs.This gives the application a view of all the heterogeneous memories as a single memory space.

Today a developer has to keep track of where data is and explicitly copy data to GPU memory if it’s not there before calling a function that uses the data. With UVA, the function itself can disambiguate where the data is and copy it appropriately. This, in particular, helps libraries become more self-contained and reduces the burden on the application developer.

Similarly for multiple GPUs, functions that use the GPU can now figure out which device the data is on and copy the data between them, instead of the developer “pre-conditioning” or copying the data before calling the function. The general idea here, Gupta says, is speed up the original CPU-to-GPU application port, and let the developers use the tools to work out any needed optimizations.

The UVA feature also has an eye toward the Project Denver architecture, which will integrate ARM CPUs and NVIDIA GPUs on the same chip, presumably making separate physical memory spaces a thing of the past. Thus, all CUDA applications developed with UVA should slide easily onto these heterogeneous platforms. “We always knew the Denver architecture was coming, so we’ve always planned for it in the CUDA programming models,” says Gupta. “Features like Unified Virtual Addressing are meant to extend out to future architectures.”

The other big enhancement in CUDA 4.0 is Thrust, a C++ template library that contains algorithms and data structures aimed at parallel programming. Once again, the idea is raise the abstraction level, in this case, for C++ programmers, so that developing parallelized applications is much more straightforward. Although C++ is not widely employed in traditional HPC (outside its use by quants for financial applications), the language is widely adopted across IT, from the consumer side to the enterprise.

To help boost performance, at compile time Thrust will attempt to choose the fastest code path for the hardware it’s to be run on. In this case, that means it will divide the work between the GPUs and CPUs to maximize throughput — yet another nod to the upcoming Denver architecture. NVIDIA claims Thrust routines such as parallel sorting are 5 to 100 times faster than the corresponding implementations of the Standard Template Library (STL) and Threading Building Blocks (TBB).

Besides the big three enhancements, CUDA 4.0 will also sport some new capabilities like being able to share a GPU with multiple CPU threads. So for example, if you have four threads running on a quad-core CPU, all those threads can drive computations on a single GPU. Previously, you would have needed four GPUs to do this or would have been restricted to executing each thread sequentially on the GPU side. Conversely, CUDA 4.0 will also let you drive multiple GPUs using a single CPU thread.

Also included in the new toolkit is an MPI implementation that automatically moves data to and from the GPU memory over InfiniBand when an application does an MPI send or receive, a new NPP image and computer vision library, an auto performance analysis capability for the Visual Profiler tool, a GPU binary disassembler, and some new features in cuda-gdb debugger.

The CUDA 4.0 toolkit will be released free of charge to registered developers on March 4th. By announcing it a few days in advance, NVIDIA is hoping to attract some new blood into the CUDA Registered Developer Program. No date is set for general release of the toolkit, but usually there’s just a couple of months lag time between the release candidate and the final version.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This