Expert Panel: What’s Around the Bend for Big Data?

By Nicole Hemsoth

March 2, 2011

This week we checked in with a number of thought leaders in big data computing to evaluate current trends and extract predictions for the coming years. We were able to round up a few notable experts who are driving big data innovations at Yahoo!, Microsoft, IBM, Facebook’s Hadoop engineering group, and Revolution Analytics—all of which are frontrunners in at least one leg of the race to capture, analyze and maintain data.

While their research and technical interests may vary, there is a general consensus that there are some major developmental shifts that will change the way big data is perceived, managed, and of course, harnessed to power analytics-driven missions.

Although it’s difficult to present an overarching view of all trends in this fluid space, we were able to pinpoint some notable movements, including a broader reach (and subsequent boost in innovation) for big data and its use; enhancements to data as a service models following increased adoption; and more application-specific trends bound to shape the big data landscape in coming years. As you might imagine, we also considered these movements in the context of opportunities (and challenges) presented by cloud computing.

Widespread Adoption via Increased Innovation

One of the most echoed statements about current trends in the big data sphere (from storage to analytics and beyond) is that as data grows, the tools needed to negotiate the massive swell of information will evolve to meet demand.

According to Todd Papaioannou, Vice President, Cloud Architecture at Yahoo, Inc., and former VP of architecture and emerging technologies at Teradata, the big trend for big data this year will be widespread adoption of via increased innovation, particularly in the enterprise—a setting that has been reticent thus far. He notes that while this push for adoption was not the case for traditional business one or two years ago it is being enabled by the “expanding Hadoop ecosystem of vendors who are starting to appear, offering commercial tools and support, which is something that these traditional enterprise customers require.”

In addition to the richer ecosystem that is developing around big data, Papaioannou believes that much of the innovation in the Hadoop and big data ecosystem will be centered around enabling much more powerful analytical applications.

Of the future of big data, he says that sometime down the road, “people will be amazed at the data they used to throw away because the insights and value they gain from that data will drive key decisions in their businesses.” On that note, there will be more emphasis on this valuable information and its organization. Papaioannou states that companies will have a big data strategy that will be a complimentary piece of their overall general data and BI strategy. In his view there will be no more “islands of data” but at the core there will be a big data platform, which will be at the center of a seamless data environment.

In terms of cloud’s role in the coming wave of big data innovation and adoption, he suggests that cloud will drive down even further the cost associated with storing and processing all of this data, offering companies a much wider menu of options from which to choose.

CTO of Revolution Analytics, David Champagne also weighed in on the role of cloud computing in the push to optimize big data processes, nothing that there are some major hurdles when it comes to large datasets and the issue of data locality. His view is that there need to be effective ways to either collect the data in the cloud, push data up to the cloud, or ensure low latency connections between cloud resources and on-premise data stores.

Like the others, Champagne sees an ever-mounting push toward advanced analytics and optimization as demand for ways to manage large datasets grows. Given the data deluge, Champagne suggests that in 5 years there will be more organizations with practical experience in managing and processing huge data sets, and this will drive optimization.  “Working on data as it streams into data stores and finding different ways to aggregate results on data partitions, will be requirements to handle this greater load.”As he states:

“Whether it is Hadoop or Microsoft’s Dryad, we’ve seen the benefits of distributed file systems, distributed computing frameworks, and SQL-like capabilities in those frameworks.  The ability to execute statistical operations on and visualize huge data sets is ultimately where the end users of such systems want to go.  Being able to run regressions or cross tabulations using huge data sets will offer insights that cannot be achieved by just using small samples.  The challenges with something like R are both integrating it into a distributing computing framework, and adapting algorithms to work with independent blocks of data.”

Enhanced Data as a Service: The New “Big Data Marketplace”

While there are likely going to be rapid developments in terms of frameworks and methodologies to handle massive datasets, with the evolution of more sophisticated tools will come an increased demand for even more data—a demand that Roger Barga, Architect with Microsoft’s eXtreme Computing Group feels will be met by a new kind of marketplace.

Barga is a believer in the power of analytics and large data to drive business growth. He admitted that he sees big data computing as one of the most significant innovations in the last ten years—a heady distinction, given the multitude of advances that have emerged.

Barga suggests that there has been a change in the way people think about vast amounts of data; it has gone from a challenging problem to a rich source for any number of business objectives. He notes that Microsoft is beginning to see a “new class of decision makers who are very comfortable with a variety of diverse data sources and an equally diverse variety of analytical tools which they use to poke and prod data sets to unlock new insights.“

In Barga’s view, big data will continue to get bigger as more ways to uncover its value emerge.  His prediction is that, due to the insatiable demand for data since there are so many new tools to analyze and handle it, in the coming year we will see the rise of data marketplaces. These will be hubs where decision makers can find the data they need to make decisions, to extract signals and gain valuable insights to help them run their business. 

As Barga describes, these “data marketplaces will go beyond simple “data as a service” offerings available today and provide both trusted public domain and premium commercial data in an integrated consumption experience with easy discovery, exploration and purchase.  The result will be much more than just datasets but allow decision makers to mash rich datasets with their high-value enterprise data to be more competitive.”

In terms of the future of big data, Roger Barga puts forth a number of lofty goals for the uses and developments in big data computing. He states:

“In the coming years we are sure to see innovative applications in fields from the internet to biotechnology and predictive analytics. Machine learning and analytics over extremely large data is still in its early stages of development and is an active area of research today.  The automated or semiautomated analysis of large volumes of data lies at the heart of big-data computing for almost all application domains.

The cloud, big data, and automated analysis, present very interesting opportunities. One of the greatest opportunities is that people can leverage the a la carte economics of elastic computing to carry out machine learning and data analytics that were prohibitively expensive due to the requirements of building and maintaining their own hardware infrastructure. In the future cloud computing may serve as a bridge between big data and predictive analytics models built using cycle-hungry machine learning and statistical based algorithms.”

With a new marketplace to push even more data into the datacenters of even more companies, in-house resources will be (if they aren’t already) stretched to the max. Looking to the cloud for storage is one thing, but as the tools develop, cloud computing could play the bold role that Barga predicts in the nearer (versus more distant) future.

Context Accumulation and Real-Time Analytics

While some have already addressed some of the more framework-related aspects of evolution in the big data space, on the application and use end, this all seems a little abstract. To put the evolution of big data trends in context, IBM Distinguished Engineer and Chief Scientist behind IBM’s Entity Analytics, Jeff Jonas revealed some specific developments, including context accumulation.

Jonas explains this further:

“There is a big difference between a big pile of puzzle pieces versus a puzzle in some state of assembly.  Context accumulation is the process whereby each new observation introduced to the enterprise (a new puzzle piece) is evaluated against the work in progress to determine if it has a place, or an affiliation.  What has been missing to date, for the most part, is organizations have been attempting to look at (e.g. use algorithms against) individual observations before first seeing how the observation relates to the historical data already gathered.  That is kind of like yelling “fire” when one sees a puzzle piece with flames on it — before first taking the piece to the puzzle where one quickly discovers that this puzzle piece is a fire … in a fireplace.”

To Jeff Jonas, context accumulation over big data will also introduce very exciting new properties including “lower false positives, lower false negatives, and the more data one harnesses, the faster one will be able to compute!  This exciting reality works in much the same way the last few pieces of the puzzle are as fast and easy as the first few, despite the fact one has more data in front of them than ever before.  This will prove to be a game changer for the big data community. “

On that note, there is an interesting exploration of those ideas at Puzzling: How Observations Are Accumulated Into Context

Jonas predicts that over the next five years, the big data community will begin shifting its attention more and more towards real-time, streaming, analytics over big data — not just periodic end-of-day batch jobs, courtesy of Hadoop. 

Batch processes provide users insight periodically, e.g., once a day or once a week.  However, it will only take so long before they stand up and say, “Hey, why did I have to wait until the end of day?  I can no longer use some of this insight, as the customer left the web page or left my store.  Can’t I get these high quality outputs in real-time?” 

Notably, there will still be a need for periodic introspection on identifying patterns and these patterns are more likely to be found using deep reflection.  So the future, I say, will be a mix of real-time and batch big data analytics.  Whether these future systems run in public or private clouds, it is quite likely either way it will be in some form of a cloud computing infrastructure … and when I say cloud what do I mean?  I mean elastic in response to changes in demand and architecture over grid computing for endless horizontal scaling.”

Big Data Clouds on the Horizon

Aside from IBM’s Jonas, others are sensing how the merger between framework advancements and practical uses is playing out—and interestingly, how the cloud enhances this marriage.

Dhruba Borthakur, a lead Hadoop engineer at Facebook, shared his views on the trends occurring in big data management based, in part, on his experiences with the social networking megasite. Borthakur feels that clouds represent a major part of new developments for large data, noting that as of now, the most common element for big data lies in batch processing systems that crunch big data sets (with the focus being more on system throughput rather than latency). He notes, however, that:

“Going forward, I visualize that more latency-sensive realtime applications will move to big-data infrastructure this coming year. For example, Facebook has started to store all Facebook User’s email messages in a Hadoop based cloud, and latency of requests is a critical factor for this infrastructure. In the coming year, I expect many other companies to start adopting big-data clouds for their real-time applications as well.

According to Borthakur, the next few years will bring about a number of changes for application developers in particular. In his view:

In the current state of affairs, the closest to a traditional database in the big-data world are some key-value stores, e.g. HBase, Cassandra, etc. These existing data stores differ from traditional databases, they do not offer ACID properties. This makes the life on an application developer more difficult. The next five years will see a proliferation of cloud-based applications: to satisfy the demands of these applications, we will start seeing newer big-data technologies that are closer to a real distributed database.

Borthakur predicts that these new databases will scale to multiple petabytes and will provide some flavors of transactional property that will make it easier to write distributed cloud-based applications.

Again, like the others who took part in this survey of opinions, he sees the power of big data to reshape the business and research landscape but notices that there are still some missing pieces that need to fall into place before the ecosystem can become completely self-sustaining.

To conclude, there is no doubt that cloud computing will play an important role in handling big data demands, especially as the predictions about rapid innovations create demand for new ways to store, process and analyze information.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This