Expert Panel: What’s Around the Bend for Big Data?

By Nicole Hemsoth

March 2, 2011

This week we checked in with a number of thought leaders in big data computing to evaluate current trends and extract predictions for the coming years. We were able to round up a few notable experts who are driving big data innovations at Yahoo!, Microsoft, IBM, Facebook’s Hadoop engineering group, and Revolution Analytics—all of which are frontrunners in at least one leg of the race to capture, analyze and maintain data.

While their research and technical interests may vary, there is a general consensus that there are some major developmental shifts that will change the way big data is perceived, managed, and of course, harnessed to power analytics-driven missions.

Although it’s difficult to present an overarching view of all trends in this fluid space, we were able to pinpoint some notable movements, including a broader reach (and subsequent boost in innovation) for big data and its use; enhancements to data as a service models following increased adoption; and more application-specific trends bound to shape the big data landscape in coming years. As you might imagine, we also considered these movements in the context of opportunities (and challenges) presented by cloud computing.

Widespread Adoption via Increased Innovation

One of the most echoed statements about current trends in the big data sphere (from storage to analytics and beyond) is that as data grows, the tools needed to negotiate the massive swell of information will evolve to meet demand.

According to Todd Papaioannou, Vice President, Cloud Architecture at Yahoo, Inc., and former VP of architecture and emerging technologies at Teradata, the big trend for big data this year will be widespread adoption of via increased innovation, particularly in the enterprise—a setting that has been reticent thus far. He notes that while this push for adoption was not the case for traditional business one or two years ago it is being enabled by the “expanding Hadoop ecosystem of vendors who are starting to appear, offering commercial tools and support, which is something that these traditional enterprise customers require.”

In addition to the richer ecosystem that is developing around big data, Papaioannou believes that much of the innovation in the Hadoop and big data ecosystem will be centered around enabling much more powerful analytical applications.

Of the future of big data, he says that sometime down the road, “people will be amazed at the data they used to throw away because the insights and value they gain from that data will drive key decisions in their businesses.” On that note, there will be more emphasis on this valuable information and its organization. Papaioannou states that companies will have a big data strategy that will be a complimentary piece of their overall general data and BI strategy. In his view there will be no more “islands of data” but at the core there will be a big data platform, which will be at the center of a seamless data environment.

In terms of cloud’s role in the coming wave of big data innovation and adoption, he suggests that cloud will drive down even further the cost associated with storing and processing all of this data, offering companies a much wider menu of options from which to choose.

CTO of Revolution Analytics, David Champagne also weighed in on the role of cloud computing in the push to optimize big data processes, nothing that there are some major hurdles when it comes to large datasets and the issue of data locality. His view is that there need to be effective ways to either collect the data in the cloud, push data up to the cloud, or ensure low latency connections between cloud resources and on-premise data stores.

Like the others, Champagne sees an ever-mounting push toward advanced analytics and optimization as demand for ways to manage large datasets grows. Given the data deluge, Champagne suggests that in 5 years there will be more organizations with practical experience in managing and processing huge data sets, and this will drive optimization.  “Working on data as it streams into data stores and finding different ways to aggregate results on data partitions, will be requirements to handle this greater load.”As he states:

“Whether it is Hadoop or Microsoft’s Dryad, we’ve seen the benefits of distributed file systems, distributed computing frameworks, and SQL-like capabilities in those frameworks.  The ability to execute statistical operations on and visualize huge data sets is ultimately where the end users of such systems want to go.  Being able to run regressions or cross tabulations using huge data sets will offer insights that cannot be achieved by just using small samples.  The challenges with something like R are both integrating it into a distributing computing framework, and adapting algorithms to work with independent blocks of data.”

Enhanced Data as a Service: The New “Big Data Marketplace”

While there are likely going to be rapid developments in terms of frameworks and methodologies to handle massive datasets, with the evolution of more sophisticated tools will come an increased demand for even more data—a demand that Roger Barga, Architect with Microsoft’s eXtreme Computing Group feels will be met by a new kind of marketplace.

Barga is a believer in the power of analytics and large data to drive business growth. He admitted that he sees big data computing as one of the most significant innovations in the last ten years—a heady distinction, given the multitude of advances that have emerged.

Barga suggests that there has been a change in the way people think about vast amounts of data; it has gone from a challenging problem to a rich source for any number of business objectives. He notes that Microsoft is beginning to see a “new class of decision makers who are very comfortable with a variety of diverse data sources and an equally diverse variety of analytical tools which they use to poke and prod data sets to unlock new insights.“

In Barga’s view, big data will continue to get bigger as more ways to uncover its value emerge.  His prediction is that, due to the insatiable demand for data since there are so many new tools to analyze and handle it, in the coming year we will see the rise of data marketplaces. These will be hubs where decision makers can find the data they need to make decisions, to extract signals and gain valuable insights to help them run their business. 

As Barga describes, these “data marketplaces will go beyond simple “data as a service” offerings available today and provide both trusted public domain and premium commercial data in an integrated consumption experience with easy discovery, exploration and purchase.  The result will be much more than just datasets but allow decision makers to mash rich datasets with their high-value enterprise data to be more competitive.”

In terms of the future of big data, Roger Barga puts forth a number of lofty goals for the uses and developments in big data computing. He states:

“In the coming years we are sure to see innovative applications in fields from the internet to biotechnology and predictive analytics. Machine learning and analytics over extremely large data is still in its early stages of development and is an active area of research today.  The automated or semiautomated analysis of large volumes of data lies at the heart of big-data computing for almost all application domains.

The cloud, big data, and automated analysis, present very interesting opportunities. One of the greatest opportunities is that people can leverage the a la carte economics of elastic computing to carry out machine learning and data analytics that were prohibitively expensive due to the requirements of building and maintaining their own hardware infrastructure. In the future cloud computing may serve as a bridge between big data and predictive analytics models built using cycle-hungry machine learning and statistical based algorithms.”

With a new marketplace to push even more data into the datacenters of even more companies, in-house resources will be (if they aren’t already) stretched to the max. Looking to the cloud for storage is one thing, but as the tools develop, cloud computing could play the bold role that Barga predicts in the nearer (versus more distant) future.

Context Accumulation and Real-Time Analytics

While some have already addressed some of the more framework-related aspects of evolution in the big data space, on the application and use end, this all seems a little abstract. To put the evolution of big data trends in context, IBM Distinguished Engineer and Chief Scientist behind IBM’s Entity Analytics, Jeff Jonas revealed some specific developments, including context accumulation.

Jonas explains this further:

“There is a big difference between a big pile of puzzle pieces versus a puzzle in some state of assembly.  Context accumulation is the process whereby each new observation introduced to the enterprise (a new puzzle piece) is evaluated against the work in progress to determine if it has a place, or an affiliation.  What has been missing to date, for the most part, is organizations have been attempting to look at (e.g. use algorithms against) individual observations before first seeing how the observation relates to the historical data already gathered.  That is kind of like yelling “fire” when one sees a puzzle piece with flames on it — before first taking the piece to the puzzle where one quickly discovers that this puzzle piece is a fire … in a fireplace.”

To Jeff Jonas, context accumulation over big data will also introduce very exciting new properties including “lower false positives, lower false negatives, and the more data one harnesses, the faster one will be able to compute!  This exciting reality works in much the same way the last few pieces of the puzzle are as fast and easy as the first few, despite the fact one has more data in front of them than ever before.  This will prove to be a game changer for the big data community. “

On that note, there is an interesting exploration of those ideas at Puzzling: How Observations Are Accumulated Into Context

Jonas predicts that over the next five years, the big data community will begin shifting its attention more and more towards real-time, streaming, analytics over big data — not just periodic end-of-day batch jobs, courtesy of Hadoop. 

Batch processes provide users insight periodically, e.g., once a day or once a week.  However, it will only take so long before they stand up and say, “Hey, why did I have to wait until the end of day?  I can no longer use some of this insight, as the customer left the web page or left my store.  Can’t I get these high quality outputs in real-time?” 

Notably, there will still be a need for periodic introspection on identifying patterns and these patterns are more likely to be found using deep reflection.  So the future, I say, will be a mix of real-time and batch big data analytics.  Whether these future systems run in public or private clouds, it is quite likely either way it will be in some form of a cloud computing infrastructure … and when I say cloud what do I mean?  I mean elastic in response to changes in demand and architecture over grid computing for endless horizontal scaling.”

Big Data Clouds on the Horizon

Aside from IBM’s Jonas, others are sensing how the merger between framework advancements and practical uses is playing out—and interestingly, how the cloud enhances this marriage.

Dhruba Borthakur, a lead Hadoop engineer at Facebook, shared his views on the trends occurring in big data management based, in part, on his experiences with the social networking megasite. Borthakur feels that clouds represent a major part of new developments for large data, noting that as of now, the most common element for big data lies in batch processing systems that crunch big data sets (with the focus being more on system throughput rather than latency). He notes, however, that:

“Going forward, I visualize that more latency-sensive realtime applications will move to big-data infrastructure this coming year. For example, Facebook has started to store all Facebook User’s email messages in a Hadoop based cloud, and latency of requests is a critical factor for this infrastructure. In the coming year, I expect many other companies to start adopting big-data clouds for their real-time applications as well.

According to Borthakur, the next few years will bring about a number of changes for application developers in particular. In his view:

In the current state of affairs, the closest to a traditional database in the big-data world are some key-value stores, e.g. HBase, Cassandra, etc. These existing data stores differ from traditional databases, they do not offer ACID properties. This makes the life on an application developer more difficult. The next five years will see a proliferation of cloud-based applications: to satisfy the demands of these applications, we will start seeing newer big-data technologies that are closer to a real distributed database.

Borthakur predicts that these new databases will scale to multiple petabytes and will provide some flavors of transactional property that will make it easier to write distributed cloud-based applications.

Again, like the others who took part in this survey of opinions, he sees the power of big data to reshape the business and research landscape but notices that there are still some missing pieces that need to fall into place before the ecosystem can become completely self-sustaining.

To conclude, there is no doubt that cloud computing will play an important role in handling big data demands, especially as the predictions about rapid innovations create demand for new ways to store, process and analyze information.
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This