Attack of the Killer Micros Redux

By Michael Feldman

March 3, 2011

NVIDIA’s unveiling of Project Denver in January 2011 certainly portends big changes ahead for the GPU maker. Over the next couple of years, it will attempt to turn itself from a graphics chip vendor into a computing company. But to make it work, NVIDIA will have to do something no other company has been able to do: take a big chunk of Intel’s volume x86 business.

To recap, Project Denver is NVIDIA’s initiative to build high-end heterogeneous processors, integrating custom-built ARM CPUs with GPUs. The resulting chips are destined for workstations, servers and supercomputers. The brawnier Denver parts will parallel the company’s Tegra line, NVIDIA’s mobile processors that have already successfully delivered ARM CPU-GPU processors into the marketplace.

The Denver strategy is familiar: leverage essentially the same processor designs across an entire product portfolio. NVIDIA’s plan is that in two or three years, the chip they deliver for a smartphone will be a baby brother to the one delivered for a supercomputer. It’s the same model Intel has successfully employed for decades with its x86 architecture.

The emergence of commodity x86 clusters in the 1990s, aka Attack of the Killer Micros, was based on the fact that Intel and AMD could leverage their PC business into the server space. Since the high-end Xeons and Opterons are just souped-up versions of their mainstream x86 design, R&D and production costs can be spread across the entire enterprise. It could be argued that the eventual failure of Intel’s Itanium CPU in the HPC space was the result of that architecture’s lack of a volume market, i.e., from a performance-per-dollar perspective, the hardware became too expensive to deploy at the scale of a supercomputer.

It’s no secret that for the past couple of decades the desktop computer business has subsidized the x86 server business. NVIDIA is taking advantage of this same model; in this case, using the gaming market for GPUs to subsidize its Tesla HPC business. It’s hard to imagine either the Xeon or Tesla business could exist on its own.

But the consumer market is now shifting. In particular, the personal computer business is moving from the desktop to mobile devices like smartphones and tablets, and for the most part, these are ARM-based platforms. And since these mobile devices are more numerous than desktop/laptop systems (and in some cases are replacing them), the ARM CPU now has the advantage in volume.

As I wrote in a recent report on the future of ARM architecture in HPC:

When total shipments are considered, ARM outruns x86 by about a 10-to-1 margin. In 2010, more than 6 billion ARM-based processors were sold, and that number is projected to grow to 8 or 9 billion over the next three years.

Intel’s problem is not just that x86 consumer devices will shift to ARM, but as a result of the volume disruption, the economics of Intel’s higher margin x86 server and workstation business will be threatened as well. That is certainly what NVIDIA is counting on, at least to some degree.

Ars Technica’s Jon Stokes provides an interesting analysis of how this could play out. He begins by arguing that NVIDIA ARM chips will lose the performance and the performance/watt battle with Intel silicon:

First, there’s simply no way that any ARM CPU vendor, NVIDIA included, will even approach Intel’s desktop and server x86 parts in terms of raw performance any time in the next five years, and probably not in this decade. Intel will retain its process leadership, and Xeon will retain the CPU performance crown. Per-thread performance is a very, very hard problem to solve, and Intel is the hands-down leader here.

It’s also the case that as ARM moves up the performance ladder, it will necessarily start to drop in terms of power efficiency. Again, there is no magic pixie dust here, and the impact of the ISA alone on power consumption in processors that draw many tens of watts is negligible. A multicore ARM chip and a multicore Xeon chip that give similar performance on compute-intensive workloads will have similar power profiles; to believe otherwise is to believe in magical little ARM performance elves.

In the case of pure CPU thread performance, Stokes may indeed be right about Intel winning that race. But he seems to have forgotten that NVIDIA will have GPUs on-chip as well. I’ve got to believe that NVIDIA expects its GPU, and not the ARM unit, to do the heavy-duty number crunching on its processors. Certainly for most HPC and visual computing applications, the graphics engine will be the workhorse.

Also for many (most?) compute-intensive applications that must be confined to a CPU, multi-threaded performance is  much more important than single-threaded performance. Certainly if you can keep all the cores fed with data, it’s better to go with less performant cores if you can simply provide more of them, as AMD is doing with its latest Opterons.

For the same reason, I think Stokes’ power efficiency argument is overstated. Right now ARM designs are more energy efficient than x86 designs, mainly because the former is a simpler architecture. While future 64-bit ARM designs will almost certainly be more complex that their 32-bit counterparts, there’s little reason to believe that they’ll need to be as complex as say a Xeon. It remains to be seen how NVIDIA will balance performance and energy efficiency in their future Denver design.

Despite Stokes’ misgivings about ARM’s performance prospects, he still believes Intel and the x86 are in for a rough time — mainly for the same volume economic drivers I talked about earlier. In fact, he speculates that Intel might be forced to develop its own ARM CPU line or open up its fabs to ARM-based SoCs. Of course, AMD could also get into the ARM business, and perhaps has an even greater incentive to do so given its lack of a viable CPU for the mobile space.

Of course the x86 has proved to be remarkably resilient to competing architectures — PowerPC, MIPS, SPARC, Itanium, to name a few. And even though on paper the ARM numbers look overwhelming, the CPU business is not a board game. As with many things, you often can’t tell how much momentum something has until you try to stop it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This