Maxeler Carves High-End Niche with HPC Acceleration Business

By Michael Feldman

March 10, 2011

Acceleration technology is all the rage these days in high performance computing. With the emergence of GPGPUs into the mainstream, a whole new sub-industry has coalesced around acceleration solutions based on the latest GPUs. Maxeler Technologies, however, has made a nice living delivering FPGA acceleration to a rather elite customer base.

London-based Maxeler Technologies began in 2003 with a mission to bring acceleration technology into high performance computing. Their customer base skews toward users who have high-value applications and who are willing to pay top dollar to boost application performance. As company CEO Oskar Mencer succinctly puts it, “People pay us to get their programs to run a lot faster.” Not surprisingly, Maxeler’s two largest target sectors are financial services and the energy industry.

Maxeler started out by trying to accelerate CAD algorithms for the VLSI industry, a strategy that didn’t pan out. The organic fit turned out to be users with compute-hungry applications, whose speed of execution had a direct influence on the business’s bottom line. The other requirement was that the compute-intensive bits of the software could be transformed into a streaming computing model.

That led Maxeler to banks, hedge fund firms, and oil & gas companies looking to run their applications faster, better, or more often. Today they have around 20 customers including such big name as J.P. Morgan, Schlumberger, Chevron, and an Italian energy firm Eni. For the time being, the others prefer to remain anonymous.

For oil & gas companies, faster seismic analysis and imaging means those organizations can perform more application runs or do so at higher fidelity — or a combination of both. Quicker and more accurate results enable the companies to make more informed bids on parcels and subsequent drilling. Especially when companies are bidding for drilling rights, better turnaround time on these seismic applications is critical to the company’s profit.

In the finance sector, Maxeler acceleration is applicable to almost any sort of application that calculates investment risk, but especially complex instrument like credit derivatives, including the notorious credit default swaps (CDSs) and collateralized default obligations (CDOs). High frequency trading is another area where Maxeler technology has been employed to good effect.

Boosting the performance of the risk calculations enables financial institutions to take on less risk themselves. Faster executing applications means the analysis can be run more often — for example, several times a day, rather than just overnight. This allows a bank to make near real-time decisions on investments based on up-to-date market conditions. If it’s not just speed they’re after, extra computational power can also be used to run more complex models. This enables institutions to measure different aspects of risk, thus providing them with more definitive investment guidance.

Maxeler’s first project was with a Wall Street firm, an engagement that kick-started the business. “We are a very strange company,” laughs Mencer. “We had no investors, no loans. We were cash-flow positive from day one, and have sustained a cash-flow positive operation since then.”

Maxeler has a vertically integrated business model in which they collaborate with their customers from design to deployment. As such, they help to define the hardware components and system architecture as well as guide software design and development. In that sense, Maxeler behaves more like a consulting business than a system provider. It’s a complete solution, but it’s not for everyone.

“We’re a very high-end solution,” admits Mencer, “There are not millions of customers out there who can hire a fully custom house to design their computing infrastructure.”

Although there are a handful of other FPGA solutions for HPC in the marketplace, none are as vertically integrated as Maxeler’s. Most are selling hardware, FPGA software tools, prepackaged libraries, or some combination of the three.

Treating each engagement as a consulting gig is a natural outcome of Maxeler’s focus on FPGA-based solutions, which by their nature, demand custom-built software. Although the company has dabbled in GPU acceleration (and is currently on the lookout to hire some top-notch CUDA engineers), it has built up its business around FPGAs. But porting an application to such an architecture is a major hurdle for most organizations, which is why the company will hold the customer’s hand to do the initial port.

During this transition, Maxeler engineers will help identify the pieces of the customer application suitable for acceleration and develop an optimized CPU-FPGA implementation that matches the chosen hardware. Only the compute-intensive kernel of the application has to be rejiggered for the FPGA. The remainder of the application can remain in its original sequential form and in its native programming environment — C, C++, Fortran, or whatever.

After the application port, Mencer says the software can be handed off to traditional programmers. The piece of technology that makes this possible is Maxeler’s FPGA Java compiler (what they call their MaxCompiler), which transforms standard Java code into dataflow graphs. And instead of byte-code, the compiler spits out FPGA bit files. According to Mencer, domain developers with no knowledge of FPGAs — or, for that matter, hardware of any kind — can use the Java technology to maintain and develop their own application kernels.

As far as hardware, Maxeler provides server nodes that consist of conventional x86 CPUs with FPGAs cards plugged in via PCI-Express slots. A server would consist of two quad-core or six-core x86 Xeons and a two or four Xilinx FPGA cards. The FPGA cards are hooked together via MaxRing, Maxeler’s high-bandwidth interconnect.

An entire deployment is usually just one or two racks of these servers, but thanks to the FPGA performance boost, it replaces 20 to 50 racks of conventional servers. As a result, energy costs are reduced by the corresponding amount. In fact, for customers constrained by datacenter space, power and cooling, switching to Maxeler technology can yield order-of-magnitude-level OPEX savings.

Although there are fewer servers to power, the platform itself is not cheap. Mencer estimates one rack might run one or two million dollars. For high value applications, though, this kind of acceleration is a no-brainer.

For example, a CDO pricing application used by J.P. Morgan used 2,000 x86 cores and required an overnight run to compute the results. After porting to Maxeler gear, they were able to achieve an order-of-magnitude increase in performance. On a per node basis, the Maxeler implementation was 31 times faster. And even though the accelerated server incorporated two FPGAs in addition to the two Intel Xeon processors, the hardware drew six percent less power during application execution than the x86-only setup.

On isolated algorithms, the performance is even more impressive. For example, applying Maxeler technology to Reverse Time Migration software used for generating seismic imaging, researchers found they could achieve a 70-fold performance increase using four Virtex-6 FPGAs (compared to an 8-core Nehalem server). This was significantly better than the 5-fold speedup they achieved with a GPU implementation; although in this case they used only a single Tesla GPU and with a smaller shared-memory footprint than the FPGA setup.

Competing against GPGPU-based solutions comes with the territory, of course, but a lot of Maxeler’s prospective clients are still focused on using conventional CPU-based platforms. In some cases, though, customers will end up acquiring these mainstream systems alongside a Maxeler FPGA solution.

“But the key competition we have are the internal IT departments of our customers because we are reducing the size of their datacenter,” explains Mencer. “And they don’t like that since their salary depends upon the size of the empire they are running.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This