Maxeler Carves High-End Niche with HPC Acceleration Business

By Michael Feldman

March 10, 2011

Acceleration technology is all the rage these days in high performance computing. With the emergence of GPGPUs into the mainstream, a whole new sub-industry has coalesced around acceleration solutions based on the latest GPUs. Maxeler Technologies, however, has made a nice living delivering FPGA acceleration to a rather elite customer base.

London-based Maxeler Technologies began in 2003 with a mission to bring acceleration technology into high performance computing. Their customer base skews toward users who have high-value applications and who are willing to pay top dollar to boost application performance. As company CEO Oskar Mencer succinctly puts it, “People pay us to get their programs to run a lot faster.” Not surprisingly, Maxeler’s two largest target sectors are financial services and the energy industry.

Maxeler started out by trying to accelerate CAD algorithms for the VLSI industry, a strategy that didn’t pan out. The organic fit turned out to be users with compute-hungry applications, whose speed of execution had a direct influence on the business’s bottom line. The other requirement was that the compute-intensive bits of the software could be transformed into a streaming computing model.

That led Maxeler to banks, hedge fund firms, and oil & gas companies looking to run their applications faster, better, or more often. Today they have around 20 customers including such big name as J.P. Morgan, Schlumberger, Chevron, and an Italian energy firm Eni. For the time being, the others prefer to remain anonymous.

For oil & gas companies, faster seismic analysis and imaging means those organizations can perform more application runs or do so at higher fidelity — or a combination of both. Quicker and more accurate results enable the companies to make more informed bids on parcels and subsequent drilling. Especially when companies are bidding for drilling rights, better turnaround time on these seismic applications is critical to the company’s profit.

In the finance sector, Maxeler acceleration is applicable to almost any sort of application that calculates investment risk, but especially complex instrument like credit derivatives, including the notorious credit default swaps (CDSs) and collateralized default obligations (CDOs). High frequency trading is another area where Maxeler technology has been employed to good effect.

Boosting the performance of the risk calculations enables financial institutions to take on less risk themselves. Faster executing applications means the analysis can be run more often — for example, several times a day, rather than just overnight. This allows a bank to make near real-time decisions on investments based on up-to-date market conditions. If it’s not just speed they’re after, extra computational power can also be used to run more complex models. This enables institutions to measure different aspects of risk, thus providing them with more definitive investment guidance.

Maxeler’s first project was with a Wall Street firm, an engagement that kick-started the business. “We are a very strange company,” laughs Mencer. “We had no investors, no loans. We were cash-flow positive from day one, and have sustained a cash-flow positive operation since then.”

Maxeler has a vertically integrated business model in which they collaborate with their customers from design to deployment. As such, they help to define the hardware components and system architecture as well as guide software design and development. In that sense, Maxeler behaves more like a consulting business than a system provider. It’s a complete solution, but it’s not for everyone.

“We’re a very high-end solution,” admits Mencer, “There are not millions of customers out there who can hire a fully custom house to design their computing infrastructure.”

Although there are a handful of other FPGA solutions for HPC in the marketplace, none are as vertically integrated as Maxeler’s. Most are selling hardware, FPGA software tools, prepackaged libraries, or some combination of the three.

Treating each engagement as a consulting gig is a natural outcome of Maxeler’s focus on FPGA-based solutions, which by their nature, demand custom-built software. Although the company has dabbled in GPU acceleration (and is currently on the lookout to hire some top-notch CUDA engineers), it has built up its business around FPGAs. But porting an application to such an architecture is a major hurdle for most organizations, which is why the company will hold the customer’s hand to do the initial port.

During this transition, Maxeler engineers will help identify the pieces of the customer application suitable for acceleration and develop an optimized CPU-FPGA implementation that matches the chosen hardware. Only the compute-intensive kernel of the application has to be rejiggered for the FPGA. The remainder of the application can remain in its original sequential form and in its native programming environment — C, C++, Fortran, or whatever.

After the application port, Mencer says the software can be handed off to traditional programmers. The piece of technology that makes this possible is Maxeler’s FPGA Java compiler (what they call their MaxCompiler), which transforms standard Java code into dataflow graphs. And instead of byte-code, the compiler spits out FPGA bit files. According to Mencer, domain developers with no knowledge of FPGAs — or, for that matter, hardware of any kind — can use the Java technology to maintain and develop their own application kernels.

As far as hardware, Maxeler provides server nodes that consist of conventional x86 CPUs with FPGAs cards plugged in via PCI-Express slots. A server would consist of two quad-core or six-core x86 Xeons and a two or four Xilinx FPGA cards. The FPGA cards are hooked together via MaxRing, Maxeler’s high-bandwidth interconnect.

An entire deployment is usually just one or two racks of these servers, but thanks to the FPGA performance boost, it replaces 20 to 50 racks of conventional servers. As a result, energy costs are reduced by the corresponding amount. In fact, for customers constrained by datacenter space, power and cooling, switching to Maxeler technology can yield order-of-magnitude-level OPEX savings.

Although there are fewer servers to power, the platform itself is not cheap. Mencer estimates one rack might run one or two million dollars. For high value applications, though, this kind of acceleration is a no-brainer.

For example, a CDO pricing application used by J.P. Morgan used 2,000 x86 cores and required an overnight run to compute the results. After porting to Maxeler gear, they were able to achieve an order-of-magnitude increase in performance. On a per node basis, the Maxeler implementation was 31 times faster. And even though the accelerated server incorporated two FPGAs in addition to the two Intel Xeon processors, the hardware drew six percent less power during application execution than the x86-only setup.

On isolated algorithms, the performance is even more impressive. For example, applying Maxeler technology to Reverse Time Migration software used for generating seismic imaging, researchers found they could achieve a 70-fold performance increase using four Virtex-6 FPGAs (compared to an 8-core Nehalem server). This was significantly better than the 5-fold speedup they achieved with a GPU implementation; although in this case they used only a single Tesla GPU and with a smaller shared-memory footprint than the FPGA setup.

Competing against GPGPU-based solutions comes with the territory, of course, but a lot of Maxeler’s prospective clients are still focused on using conventional CPU-based platforms. In some cases, though, customers will end up acquiring these mainstream systems alongside a Maxeler FPGA solution.

“But the key competition we have are the internal IT departments of our customers because we are reducing the size of their datacenter,” explains Mencer. “And they don’t like that since their salary depends upon the size of the empire they are running.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This