Maxeler Carves High-End Niche with HPC Acceleration Business

By Michael Feldman

March 10, 2011

Acceleration technology is all the rage these days in high performance computing. With the emergence of GPGPUs into the mainstream, a whole new sub-industry has coalesced around acceleration solutions based on the latest GPUs. Maxeler Technologies, however, has made a nice living delivering FPGA acceleration to a rather elite customer base.

London-based Maxeler Technologies began in 2003 with a mission to bring acceleration technology into high performance computing. Their customer base skews toward users who have high-value applications and who are willing to pay top dollar to boost application performance. As company CEO Oskar Mencer succinctly puts it, “People pay us to get their programs to run a lot faster.” Not surprisingly, Maxeler’s two largest target sectors are financial services and the energy industry.

Maxeler started out by trying to accelerate CAD algorithms for the VLSI industry, a strategy that didn’t pan out. The organic fit turned out to be users with compute-hungry applications, whose speed of execution had a direct influence on the business’s bottom line. The other requirement was that the compute-intensive bits of the software could be transformed into a streaming computing model.

That led Maxeler to banks, hedge fund firms, and oil & gas companies looking to run their applications faster, better, or more often. Today they have around 20 customers including such big name as J.P. Morgan, Schlumberger, Chevron, and an Italian energy firm Eni. For the time being, the others prefer to remain anonymous.

For oil & gas companies, faster seismic analysis and imaging means those organizations can perform more application runs or do so at higher fidelity — or a combination of both. Quicker and more accurate results enable the companies to make more informed bids on parcels and subsequent drilling. Especially when companies are bidding for drilling rights, better turnaround time on these seismic applications is critical to the company’s profit.

In the finance sector, Maxeler acceleration is applicable to almost any sort of application that calculates investment risk, but especially complex instrument like credit derivatives, including the notorious credit default swaps (CDSs) and collateralized default obligations (CDOs). High frequency trading is another area where Maxeler technology has been employed to good effect.

Boosting the performance of the risk calculations enables financial institutions to take on less risk themselves. Faster executing applications means the analysis can be run more often — for example, several times a day, rather than just overnight. This allows a bank to make near real-time decisions on investments based on up-to-date market conditions. If it’s not just speed they’re after, extra computational power can also be used to run more complex models. This enables institutions to measure different aspects of risk, thus providing them with more definitive investment guidance.

Maxeler’s first project was with a Wall Street firm, an engagement that kick-started the business. “We are a very strange company,” laughs Mencer. “We had no investors, no loans. We were cash-flow positive from day one, and have sustained a cash-flow positive operation since then.”

Maxeler has a vertically integrated business model in which they collaborate with their customers from design to deployment. As such, they help to define the hardware components and system architecture as well as guide software design and development. In that sense, Maxeler behaves more like a consulting business than a system provider. It’s a complete solution, but it’s not for everyone.

“We’re a very high-end solution,” admits Mencer, “There are not millions of customers out there who can hire a fully custom house to design their computing infrastructure.”

Although there are a handful of other FPGA solutions for HPC in the marketplace, none are as vertically integrated as Maxeler’s. Most are selling hardware, FPGA software tools, prepackaged libraries, or some combination of the three.

Treating each engagement as a consulting gig is a natural outcome of Maxeler’s focus on FPGA-based solutions, which by their nature, demand custom-built software. Although the company has dabbled in GPU acceleration (and is currently on the lookout to hire some top-notch CUDA engineers), it has built up its business around FPGAs. But porting an application to such an architecture is a major hurdle for most organizations, which is why the company will hold the customer’s hand to do the initial port.

During this transition, Maxeler engineers will help identify the pieces of the customer application suitable for acceleration and develop an optimized CPU-FPGA implementation that matches the chosen hardware. Only the compute-intensive kernel of the application has to be rejiggered for the FPGA. The remainder of the application can remain in its original sequential form and in its native programming environment — C, C++, Fortran, or whatever.

After the application port, Mencer says the software can be handed off to traditional programmers. The piece of technology that makes this possible is Maxeler’s FPGA Java compiler (what they call their MaxCompiler), which transforms standard Java code into dataflow graphs. And instead of byte-code, the compiler spits out FPGA bit files. According to Mencer, domain developers with no knowledge of FPGAs — or, for that matter, hardware of any kind — can use the Java technology to maintain and develop their own application kernels.

As far as hardware, Maxeler provides server nodes that consist of conventional x86 CPUs with FPGAs cards plugged in via PCI-Express slots. A server would consist of two quad-core or six-core x86 Xeons and a two or four Xilinx FPGA cards. The FPGA cards are hooked together via MaxRing, Maxeler’s high-bandwidth interconnect.

An entire deployment is usually just one or two racks of these servers, but thanks to the FPGA performance boost, it replaces 20 to 50 racks of conventional servers. As a result, energy costs are reduced by the corresponding amount. In fact, for customers constrained by datacenter space, power and cooling, switching to Maxeler technology can yield order-of-magnitude-level OPEX savings.

Although there are fewer servers to power, the platform itself is not cheap. Mencer estimates one rack might run one or two million dollars. For high value applications, though, this kind of acceleration is a no-brainer.

For example, a CDO pricing application used by J.P. Morgan used 2,000 x86 cores and required an overnight run to compute the results. After porting to Maxeler gear, they were able to achieve an order-of-magnitude increase in performance. On a per node basis, the Maxeler implementation was 31 times faster. And even though the accelerated server incorporated two FPGAs in addition to the two Intel Xeon processors, the hardware drew six percent less power during application execution than the x86-only setup.

On isolated algorithms, the performance is even more impressive. For example, applying Maxeler technology to Reverse Time Migration software used for generating seismic imaging, researchers found they could achieve a 70-fold performance increase using four Virtex-6 FPGAs (compared to an 8-core Nehalem server). This was significantly better than the 5-fold speedup they achieved with a GPU implementation; although in this case they used only a single Tesla GPU and with a smaller shared-memory footprint than the FPGA setup.

Competing against GPGPU-based solutions comes with the territory, of course, but a lot of Maxeler’s prospective clients are still focused on using conventional CPU-based platforms. In some cases, though, customers will end up acquiring these mainstream systems alongside a Maxeler FPGA solution.

“But the key competition we have are the internal IT departments of our customers because we are reducing the size of their datacenter,” explains Mencer. “And they don’t like that since their salary depends upon the size of the empire they are running.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This