Maxeler Carves High-End Niche with HPC Acceleration Business

By Michael Feldman

March 10, 2011

Acceleration technology is all the rage these days in high performance computing. With the emergence of GPGPUs into the mainstream, a whole new sub-industry has coalesced around acceleration solutions based on the latest GPUs. Maxeler Technologies, however, has made a nice living delivering FPGA acceleration to a rather elite customer base.

London-based Maxeler Technologies began in 2003 with a mission to bring acceleration technology into high performance computing. Their customer base skews toward users who have high-value applications and who are willing to pay top dollar to boost application performance. As company CEO Oskar Mencer succinctly puts it, “People pay us to get their programs to run a lot faster.” Not surprisingly, Maxeler’s two largest target sectors are financial services and the energy industry.

Maxeler started out by trying to accelerate CAD algorithms for the VLSI industry, a strategy that didn’t pan out. The organic fit turned out to be users with compute-hungry applications, whose speed of execution had a direct influence on the business’s bottom line. The other requirement was that the compute-intensive bits of the software could be transformed into a streaming computing model.

That led Maxeler to banks, hedge fund firms, and oil & gas companies looking to run their applications faster, better, or more often. Today they have around 20 customers including such big name as J.P. Morgan, Schlumberger, Chevron, and an Italian energy firm Eni. For the time being, the others prefer to remain anonymous.

For oil & gas companies, faster seismic analysis and imaging means those organizations can perform more application runs or do so at higher fidelity — or a combination of both. Quicker and more accurate results enable the companies to make more informed bids on parcels and subsequent drilling. Especially when companies are bidding for drilling rights, better turnaround time on these seismic applications is critical to the company’s profit.

In the finance sector, Maxeler acceleration is applicable to almost any sort of application that calculates investment risk, but especially complex instrument like credit derivatives, including the notorious credit default swaps (CDSs) and collateralized default obligations (CDOs). High frequency trading is another area where Maxeler technology has been employed to good effect.

Boosting the performance of the risk calculations enables financial institutions to take on less risk themselves. Faster executing applications means the analysis can be run more often — for example, several times a day, rather than just overnight. This allows a bank to make near real-time decisions on investments based on up-to-date market conditions. If it’s not just speed they’re after, extra computational power can also be used to run more complex models. This enables institutions to measure different aspects of risk, thus providing them with more definitive investment guidance.

Maxeler’s first project was with a Wall Street firm, an engagement that kick-started the business. “We are a very strange company,” laughs Mencer. “We had no investors, no loans. We were cash-flow positive from day one, and have sustained a cash-flow positive operation since then.”

Maxeler has a vertically integrated business model in which they collaborate with their customers from design to deployment. As such, they help to define the hardware components and system architecture as well as guide software design and development. In that sense, Maxeler behaves more like a consulting business than a system provider. It’s a complete solution, but it’s not for everyone.

“We’re a very high-end solution,” admits Mencer, “There are not millions of customers out there who can hire a fully custom house to design their computing infrastructure.”

Although there are a handful of other FPGA solutions for HPC in the marketplace, none are as vertically integrated as Maxeler’s. Most are selling hardware, FPGA software tools, prepackaged libraries, or some combination of the three.

Treating each engagement as a consulting gig is a natural outcome of Maxeler’s focus on FPGA-based solutions, which by their nature, demand custom-built software. Although the company has dabbled in GPU acceleration (and is currently on the lookout to hire some top-notch CUDA engineers), it has built up its business around FPGAs. But porting an application to such an architecture is a major hurdle for most organizations, which is why the company will hold the customer’s hand to do the initial port.

During this transition, Maxeler engineers will help identify the pieces of the customer application suitable for acceleration and develop an optimized CPU-FPGA implementation that matches the chosen hardware. Only the compute-intensive kernel of the application has to be rejiggered for the FPGA. The remainder of the application can remain in its original sequential form and in its native programming environment — C, C++, Fortran, or whatever.

After the application port, Mencer says the software can be handed off to traditional programmers. The piece of technology that makes this possible is Maxeler’s FPGA Java compiler (what they call their MaxCompiler), which transforms standard Java code into dataflow graphs. And instead of byte-code, the compiler spits out FPGA bit files. According to Mencer, domain developers with no knowledge of FPGAs — or, for that matter, hardware of any kind — can use the Java technology to maintain and develop their own application kernels.

As far as hardware, Maxeler provides server nodes that consist of conventional x86 CPUs with FPGAs cards plugged in via PCI-Express slots. A server would consist of two quad-core or six-core x86 Xeons and a two or four Xilinx FPGA cards. The FPGA cards are hooked together via MaxRing, Maxeler’s high-bandwidth interconnect.

An entire deployment is usually just one or two racks of these servers, but thanks to the FPGA performance boost, it replaces 20 to 50 racks of conventional servers. As a result, energy costs are reduced by the corresponding amount. In fact, for customers constrained by datacenter space, power and cooling, switching to Maxeler technology can yield order-of-magnitude-level OPEX savings.

Although there are fewer servers to power, the platform itself is not cheap. Mencer estimates one rack might run one or two million dollars. For high value applications, though, this kind of acceleration is a no-brainer.

For example, a CDO pricing application used by J.P. Morgan used 2,000 x86 cores and required an overnight run to compute the results. After porting to Maxeler gear, they were able to achieve an order-of-magnitude increase in performance. On a per node basis, the Maxeler implementation was 31 times faster. And even though the accelerated server incorporated two FPGAs in addition to the two Intel Xeon processors, the hardware drew six percent less power during application execution than the x86-only setup.

On isolated algorithms, the performance is even more impressive. For example, applying Maxeler technology to Reverse Time Migration software used for generating seismic imaging, researchers found they could achieve a 70-fold performance increase using four Virtex-6 FPGAs (compared to an 8-core Nehalem server). This was significantly better than the 5-fold speedup they achieved with a GPU implementation; although in this case they used only a single Tesla GPU and with a smaller shared-memory footprint than the FPGA setup.

Competing against GPGPU-based solutions comes with the territory, of course, but a lot of Maxeler’s prospective clients are still focused on using conventional CPU-based platforms. In some cases, though, customers will end up acquiring these mainstream systems alongside a Maxeler FPGA solution.

“But the key competition we have are the internal IT departments of our customers because we are reducing the size of their datacenter,” explains Mencer. “And they don’t like that since their salary depends upon the size of the empire they are running.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This