Maxeler Carves High-End Niche with HPC Acceleration Business

By Michael Feldman

March 10, 2011

Acceleration technology is all the rage these days in high performance computing. With the emergence of GPGPUs into the mainstream, a whole new sub-industry has coalesced around acceleration solutions based on the latest GPUs. Maxeler Technologies, however, has made a nice living delivering FPGA acceleration to a rather elite customer base.

London-based Maxeler Technologies began in 2003 with a mission to bring acceleration technology into high performance computing. Their customer base skews toward users who have high-value applications and who are willing to pay top dollar to boost application performance. As company CEO Oskar Mencer succinctly puts it, “People pay us to get their programs to run a lot faster.” Not surprisingly, Maxeler’s two largest target sectors are financial services and the energy industry.

Maxeler started out by trying to accelerate CAD algorithms for the VLSI industry, a strategy that didn’t pan out. The organic fit turned out to be users with compute-hungry applications, whose speed of execution had a direct influence on the business’s bottom line. The other requirement was that the compute-intensive bits of the software could be transformed into a streaming computing model.

That led Maxeler to banks, hedge fund firms, and oil & gas companies looking to run their applications faster, better, or more often. Today they have around 20 customers including such big name as J.P. Morgan, Schlumberger, Chevron, and an Italian energy firm Eni. For the time being, the others prefer to remain anonymous.

For oil & gas companies, faster seismic analysis and imaging means those organizations can perform more application runs or do so at higher fidelity — or a combination of both. Quicker and more accurate results enable the companies to make more informed bids on parcels and subsequent drilling. Especially when companies are bidding for drilling rights, better turnaround time on these seismic applications is critical to the company’s profit.

In the finance sector, Maxeler acceleration is applicable to almost any sort of application that calculates investment risk, but especially complex instrument like credit derivatives, including the notorious credit default swaps (CDSs) and collateralized default obligations (CDOs). High frequency trading is another area where Maxeler technology has been employed to good effect.

Boosting the performance of the risk calculations enables financial institutions to take on less risk themselves. Faster executing applications means the analysis can be run more often — for example, several times a day, rather than just overnight. This allows a bank to make near real-time decisions on investments based on up-to-date market conditions. If it’s not just speed they’re after, extra computational power can also be used to run more complex models. This enables institutions to measure different aspects of risk, thus providing them with more definitive investment guidance.

Maxeler’s first project was with a Wall Street firm, an engagement that kick-started the business. “We are a very strange company,” laughs Mencer. “We had no investors, no loans. We were cash-flow positive from day one, and have sustained a cash-flow positive operation since then.”

Maxeler has a vertically integrated business model in which they collaborate with their customers from design to deployment. As such, they help to define the hardware components and system architecture as well as guide software design and development. In that sense, Maxeler behaves more like a consulting business than a system provider. It’s a complete solution, but it’s not for everyone.

“We’re a very high-end solution,” admits Mencer, “There are not millions of customers out there who can hire a fully custom house to design their computing infrastructure.”

Although there are a handful of other FPGA solutions for HPC in the marketplace, none are as vertically integrated as Maxeler’s. Most are selling hardware, FPGA software tools, prepackaged libraries, or some combination of the three.

Treating each engagement as a consulting gig is a natural outcome of Maxeler’s focus on FPGA-based solutions, which by their nature, demand custom-built software. Although the company has dabbled in GPU acceleration (and is currently on the lookout to hire some top-notch CUDA engineers), it has built up its business around FPGAs. But porting an application to such an architecture is a major hurdle for most organizations, which is why the company will hold the customer’s hand to do the initial port.

During this transition, Maxeler engineers will help identify the pieces of the customer application suitable for acceleration and develop an optimized CPU-FPGA implementation that matches the chosen hardware. Only the compute-intensive kernel of the application has to be rejiggered for the FPGA. The remainder of the application can remain in its original sequential form and in its native programming environment — C, C++, Fortran, or whatever.

After the application port, Mencer says the software can be handed off to traditional programmers. The piece of technology that makes this possible is Maxeler’s FPGA Java compiler (what they call their MaxCompiler), which transforms standard Java code into dataflow graphs. And instead of byte-code, the compiler spits out FPGA bit files. According to Mencer, domain developers with no knowledge of FPGAs — or, for that matter, hardware of any kind — can use the Java technology to maintain and develop their own application kernels.

As far as hardware, Maxeler provides server nodes that consist of conventional x86 CPUs with FPGAs cards plugged in via PCI-Express slots. A server would consist of two quad-core or six-core x86 Xeons and a two or four Xilinx FPGA cards. The FPGA cards are hooked together via MaxRing, Maxeler’s high-bandwidth interconnect.

An entire deployment is usually just one or two racks of these servers, but thanks to the FPGA performance boost, it replaces 20 to 50 racks of conventional servers. As a result, energy costs are reduced by the corresponding amount. In fact, for customers constrained by datacenter space, power and cooling, switching to Maxeler technology can yield order-of-magnitude-level OPEX savings.

Although there are fewer servers to power, the platform itself is not cheap. Mencer estimates one rack might run one or two million dollars. For high value applications, though, this kind of acceleration is a no-brainer.

For example, a CDO pricing application used by J.P. Morgan used 2,000 x86 cores and required an overnight run to compute the results. After porting to Maxeler gear, they were able to achieve an order-of-magnitude increase in performance. On a per node basis, the Maxeler implementation was 31 times faster. And even though the accelerated server incorporated two FPGAs in addition to the two Intel Xeon processors, the hardware drew six percent less power during application execution than the x86-only setup.

On isolated algorithms, the performance is even more impressive. For example, applying Maxeler technology to Reverse Time Migration software used for generating seismic imaging, researchers found they could achieve a 70-fold performance increase using four Virtex-6 FPGAs (compared to an 8-core Nehalem server). This was significantly better than the 5-fold speedup they achieved with a GPU implementation; although in this case they used only a single Tesla GPU and with a smaller shared-memory footprint than the FPGA setup.

Competing against GPGPU-based solutions comes with the territory, of course, but a lot of Maxeler’s prospective clients are still focused on using conventional CPU-based platforms. In some cases, though, customers will end up acquiring these mainstream systems alongside a Maxeler FPGA solution.

“But the key competition we have are the internal IT departments of our customers because we are reducing the size of their datacenter,” explains Mencer. “And they don’t like that since their salary depends upon the size of the empire they are running.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This