Computer Simulations Illustrate Scope of Japanese Disaster

By Michael Feldman

March 16, 2011

The horrendous aftermath of last Friday’s 9.0 earthquake off the east coast of Japan is still unfolding. The quake was the largest ever for the island nation and was described by Prime Minister Naoto Kan as his nation’s ”worst crisis since the end of the war 65 years ago.”

The ensuing destruction from tsunamis, infrastructure collapse, fires and now nuclear plant radiation is being tracked and analyzed, some with the help of computer technology designed for just such an event. In certain cases, this technology worked quite well. As reported by Computerworld, the National Oceanic and Atmospheric Administration’s (NOAA) Center for Tsunami Research was able to track the earthquake-spawned tsunamis in real-time as they spread east and south across the Pacific Ocean. The models predicted both the timing and intensity of the waves as they made their way to the west coasts of North and South America.

According to the NOAA Center for Tsunami Research, approximately 25 minutes after the earthquake, the tsunami was recorded at DART buoy 21418, which was near the epicenter of the quake off the coast of Japan. DART, which stands for Deep-ocean Assessment and Reporting of Tsunamis, uses dozens of buoys scattered across the ocean to collect tsunami-spawned wave action and beam the data to warning centers around the country.

NOAA, as well as a number of other research institutions, rely on the MOST model for tsunami forecasting. MOST (Method of Splitting Tsunami) is a suite of numerical codes capable of simulating three processes of tsunami evolution: earthquake, transoceanic propagation, and inundation of dry land. The code was developed by Vasily Titov of the Pacific Marine Environmental Laboratory’s and Costas Emmanuel Synolakis of the University of Southern California.

The model was used to generate an animation of last Friday’s earthquake, which illustrates how the tsunami propagated across the Pacific Ocean. Detailed analysis of the results have not yet been completed, but according to Donald Denbo of the University of Washington, for past tsunami events they’ve achieved 85 percent accuracy in predicting maximum wave height. As the animation shows, the strongest wave energy was directed southward away from North America, which was reflected in the relatively light damage to Hawaii and the West Coast of the US.

The model was run on six Dell PowerEdge dual-socket servers with Intel Xeon X5670 CPUs (2.93 GHz) , 32GB of RAM, and 16TB of disk storage. The animation runs were pre-computed, with the results saved on disk as compressed files. There are a total of 1691 pre-computed runs, each taking about 8 hours. The animation was generated from these compressed files and generated with MATLAB on a dual-processor laptop in about 4 hours.

Although the model is designed to work in real time, it’s of limited use for coastal communities in close proximity to the earthquake. Residents along the northeast coast of Japan were warned immediately following the quake, but there simply wasn’t enough time to perform a mass evacuation of the shoreline communities. In this case, the first 20-foot-plus waves hit the coast about an hour-and-a-half after the earthquake and traveled inland up to six miles, inundating entire communities.

In fact, most of the earthquake fatalities tallied so far appear to be tsunami related, with whole towns destroyed by the giant waves. As of Wednesday, the official death toll stood at over 4,300, with more than 8,000 people still missing. Both numbers are expected to rise.

While the tsunami aftermath was being tallied, another crisis developed around the Fukushima Daiichi nuclear power plant in northeastern Japan. The number two, three and four reactors of the plant’s six reactors were seriously damaged during the quake, causing fires and subsequent explosions that released radioactive material into the air. The problem stems from damage to the water cooling systems, which has caused the reactor cores to become exposed to the air. This allow the nuclear materials to overheat and generate hydrogen gas, resulting in dangerous pressure buildup.

A 12-mile radius around the plant has been evacuated, although the chairman of the United States Nuclear Regulatory Commission is advising evacuation of a much larger area. The current danger level appears to be somewhere between the Chernobyl nuclear disaster in 1986 and the Three Mile Island accident in 1979. As this article goes to press, the situation is still in flux as fears of a containment breach and core meltdown are still real threats.

The spikes in airborne radiation that have accompanied the explosions are being tracked, mainly for the purpose of reducing exposure to on-site rescue workers and the local populace, but also to ensure that these radioactive clouds don’t threaten other areas of Japan or even further afield. Since winds tend to disperse the radioactive clouds rather rapidly, the danger to areas outside of northeast Japan, and especially to other countries, is rather small at this point.

One of the radiation releases produced a local reading of 10,850 microsieverts per hour, or about 5,000 times the normal background level. Average human exposure for an entire year is on the order of 6,200 microsieverts, while acute radiation sickness doesn’t occur until you get into the 1,000,000 microsieverts per hour range. reports that the NNSA is lending a hand with a team from the National Atmospheric Release Advisory Center (NARAC) that is helping to provide real-time estimates associated with the radiation leaks. According to the report: “The squad’s specialists plug data in to supercomputer algorithms on radiation doses, exposure, hazard areas, meteorological conditions and other factors to produce predictive models.”

The idea is to repurpose some of the same codes used for safeguarding US nuclear materials for the nuclear plant disaster. The NARAC team runs out of Lawrence Livermore in California and presumably has access to some of the big Blue Gene supercomputers there (Dawn, for example), but according to Livermore officials, these resources are not being used for this effort.

Half a world away, the Viennese Central Institute for Meteorology and Geodynamics is also tracking these radioactive clouds. The institute has modeled the dispersal of radioactive Iodine and Cesium as it streams across the Pacific Ocean. The illustration below models the dispersal of Iodine-131 associated with one of the radiation releases (click on the image to display animation).

One unfortunate irony of this particular earthquakes is that is has incapacitated Japan’s own ability to do much of this modeling work on its own. Because of the damage or shutdown of many of the nation’s power plants — nuclear or otherwise — Japan is undergoing rolling blackouts across the country. Some areas in northern Japan are completely without power, where 850,000 households are still without electricity.

Major computing centers are barely operational, with facilities like the ones at RIKEN and the Tokyo Institute of Technology (Tokyo Tech) operating intermittently. Cycles for the multi-petaflop TSUBAME 2.0 system at Tokyo Tech will be especially hard to come by, given that the machine requires several hours for booting up and shutting down. Presumably after the power situation stabilizes (which may not be for some time), Japanese supercomputers will be working overtime running post-mortem scenarios of the tsunami and nuclear plant disasters.

Given the country’s risky seismic profile, the episode may spur the Japanese to re-evaluate its nuclear energy strategy. Beyond that, the disaster will certainly refocus the country’s efforts to provide more sophisticated disaster preparedness systems and robust infrastructure for its populace. But for a country that prides itself on how well it has overcome its precarious geography, this was a harsh lesson indeed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This