Computer Simulations Illustrate Scope of Japanese Disaster

By Michael Feldman

March 16, 2011

The horrendous aftermath of last Friday’s 9.0 earthquake off the east coast of Japan is still unfolding. The quake was the largest ever for the island nation and was described by Prime Minister Naoto Kan as his nation’s ”worst crisis since the end of the war 65 years ago.”

The ensuing destruction from tsunamis, infrastructure collapse, fires and now nuclear plant radiation is being tracked and analyzed, some with the help of computer technology designed for just such an event. In certain cases, this technology worked quite well. As reported by Computerworld, the National Oceanic and Atmospheric Administration’s (NOAA) Center for Tsunami Research was able to track the earthquake-spawned tsunamis in real-time as they spread east and south across the Pacific Ocean. The models predicted both the timing and intensity of the waves as they made their way to the west coasts of North and South America.

According to the NOAA Center for Tsunami Research, approximately 25 minutes after the earthquake, the tsunami was recorded at DART buoy 21418, which was near the epicenter of the quake off the coast of Japan. DART, which stands for Deep-ocean Assessment and Reporting of Tsunamis, uses dozens of buoys scattered across the ocean to collect tsunami-spawned wave action and beam the data to warning centers around the country.

NOAA, as well as a number of other research institutions, rely on the MOST model for tsunami forecasting. MOST (Method of Splitting Tsunami) is a suite of numerical codes capable of simulating three processes of tsunami evolution: earthquake, transoceanic propagation, and inundation of dry land. The code was developed by Vasily Titov of the Pacific Marine Environmental Laboratory’s and Costas Emmanuel Synolakis of the University of Southern California.

The model was used to generate an animation of last Friday’s earthquake, which illustrates how the tsunami propagated across the Pacific Ocean. Detailed analysis of the results have not yet been completed, but according to Donald Denbo of the University of Washington, for past tsunami events they’ve achieved 85 percent accuracy in predicting maximum wave height. As the animation shows, the strongest wave energy was directed southward away from North America, which was reflected in the relatively light damage to Hawaii and the West Coast of the US.

The model was run on six Dell PowerEdge dual-socket servers with Intel Xeon X5670 CPUs (2.93 GHz) , 32GB of RAM, and 16TB of disk storage. The animation runs were pre-computed, with the results saved on disk as compressed files. There are a total of 1691 pre-computed runs, each taking about 8 hours. The animation was generated from these compressed files and generated with MATLAB on a dual-processor laptop in about 4 hours.

Although the model is designed to work in real time, it’s of limited use for coastal communities in close proximity to the earthquake. Residents along the northeast coast of Japan were warned immediately following the quake, but there simply wasn’t enough time to perform a mass evacuation of the shoreline communities. In this case, the first 20-foot-plus waves hit the coast about an hour-and-a-half after the earthquake and traveled inland up to six miles, inundating entire communities.

In fact, most of the earthquake fatalities tallied so far appear to be tsunami related, with whole towns destroyed by the giant waves. As of Wednesday, the official death toll stood at over 4,300, with more than 8,000 people still missing. Both numbers are expected to rise.

While the tsunami aftermath was being tallied, another crisis developed around the Fukushima Daiichi nuclear power plant in northeastern Japan. The number two, three and four reactors of the plant’s six reactors were seriously damaged during the quake, causing fires and subsequent explosions that released radioactive material into the air. The problem stems from damage to the water cooling systems, which has caused the reactor cores to become exposed to the air. This allow the nuclear materials to overheat and generate hydrogen gas, resulting in dangerous pressure buildup.

A 12-mile radius around the plant has been evacuated, although the chairman of the United States Nuclear Regulatory Commission is advising evacuation of a much larger area. The current danger level appears to be somewhere between the Chernobyl nuclear disaster in 1986 and the Three Mile Island accident in 1979. As this article goes to press, the situation is still in flux as fears of a containment breach and core meltdown are still real threats.

The spikes in airborne radiation that have accompanied the explosions are being tracked, mainly for the purpose of reducing exposure to on-site rescue workers and the local populace, but also to ensure that these radioactive clouds don’t threaten other areas of Japan or even further afield. Since winds tend to disperse the radioactive clouds rather rapidly, the danger to areas outside of northeast Japan, and especially to other countries, is rather small at this point.

One of the radiation releases produced a local reading of 10,850 microsieverts per hour, or about 5,000 times the normal background level. Average human exposure for an entire year is on the order of 6,200 microsieverts, while acute radiation sickness doesn’t occur until you get into the 1,000,000 microsieverts per hour range. reports that the NNSA is lending a hand with a team from the National Atmospheric Release Advisory Center (NARAC) that is helping to provide real-time estimates associated with the radiation leaks. According to the report: “The squad’s specialists plug data in to supercomputer algorithms on radiation doses, exposure, hazard areas, meteorological conditions and other factors to produce predictive models.”

The idea is to repurpose some of the same codes used for safeguarding US nuclear materials for the nuclear plant disaster. The NARAC team runs out of Lawrence Livermore in California and presumably has access to some of the big Blue Gene supercomputers there (Dawn, for example), but according to Livermore officials, these resources are not being used for this effort.

Half a world away, the Viennese Central Institute for Meteorology and Geodynamics is also tracking these radioactive clouds. The institute has modeled the dispersal of radioactive Iodine and Cesium as it streams across the Pacific Ocean. The illustration below models the dispersal of Iodine-131 associated with one of the radiation releases (click on the image to display animation).

One unfortunate irony of this particular earthquakes is that is has incapacitated Japan’s own ability to do much of this modeling work on its own. Because of the damage or shutdown of many of the nation’s power plants — nuclear or otherwise — Japan is undergoing rolling blackouts across the country. Some areas in northern Japan are completely without power, where 850,000 households are still without electricity.

Major computing centers are barely operational, with facilities like the ones at RIKEN and the Tokyo Institute of Technology (Tokyo Tech) operating intermittently. Cycles for the multi-petaflop TSUBAME 2.0 system at Tokyo Tech will be especially hard to come by, given that the machine requires several hours for booting up and shutting down. Presumably after the power situation stabilizes (which may not be for some time), Japanese supercomputers will be working overtime running post-mortem scenarios of the tsunami and nuclear plant disasters.

Given the country’s risky seismic profile, the episode may spur the Japanese to re-evaluate its nuclear energy strategy. Beyond that, the disaster will certainly refocus the country’s efforts to provide more sophisticated disaster preparedness systems and robust infrastructure for its populace. But for a country that prides itself on how well it has overcome its precarious geography, this was a harsh lesson indeed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This