Cloud@Home: Goals, Challenges and Benefits of a Volunteer Cloud

By Dr. Salvatore Distefano and Dr. Antonio Puliafito

March 17, 2011

Cloud computing is emerging as a promising paradigm capable of providing a flexible, dynamic, resilient and cost effective  infrastructure for both academic and business environments. It aims at raising the level of abstraction of physical resources toward  a “user-centric” perspective, focused on the concept of service as the elementary unit for building any application. All the cloud’s  resources, both physical/hardware and logical/abstract (software, data, etc) are therefore considered “as a service” and so all cloud’s  design and implementation choices follow a “service oriented” philosophy.

Cloud is actually a real, operating and effective solution in commercial and business context, offering computing resources and services for renting, accessed through the Web according to a client-server paradigm regulated by specific SLA. In fact, several  commercial solutions and infrastructure providers make business on Cloud, such as Amazon EC2 and S3 IBM’s Blue Cloud, Sun  Network.com, Microsoft Azure Services Platform, and so on.

Recently cloud computing has been quickly and widely spreading in open contexts such as scientific, academic and social communities, due to the increasing demand of computing resources required by their  users. For example, there are several research activities and projects on Cloud, such as Nimbus, Eucalyptus, OpenNEbula, Reservoir,  OpenCyrrus, OCCI, etc., aimed at implementing their open infrastructure providing a specific middleware.

Among the reasons behind the success of cloud, outside of the potential for lower costs, there are other considerations, including the user-centric interface that acts as a unique, user friendly, point of access for users’ needs and requirements; on-demand service provisioning; the QoS guaranteed offer, and the autonomous system for managing hardware, software and data transparently to users [10].

But, on the other hand, there are different open problems in cloud infrastructures that inhibit their use mainly concerning information security (confidentiality and integrity), trustiness, interoperability, reliability, availability and other QoS requirements specified in the SLA, etc., only partially addressed or sometimes still uncovered. Besides, several organizations made important investments in grid and similar distributed infrastructures over the last several years: what to do with these? Discard or reuse? How to reuse?

Moreover, the rise of the “techno-utility complex” and the corresponding increase of computing resources demand, in some cases growing dramatically faster than Moore’s Law as predicted by the Sun CTO Greg Papadopoulos in the red shift theory for IT [6], could bring, in a close future, towards an oligarchy, a lobby or a trust of few big companies controlling the whole computing resources market.

To avoid such pessimistic but achievable scenario, we suggest to address the problem in a different way: instead of building costly private data centers that Google CEO Eric Schmidt likes to compare to the prohibitively expensive cyclotrons [4], we propose a more “democratic” form of cloud computing, in which the computing resources of a single user, company, and/or community accessing the cloud can be shared with the others, in order to contribute to the elaboration of complex problems.

In order to implement such idea, a possible source of inspiration could be the volunteer computing paradigm. Volunteer computing (also called Peer-to-Peer computing, Global computing or public computing) uses computers volunteered by their owners, as a source of computing power and storage to provide distributed scientific computing [3]. The key idea of volunteer computing is to harvest the idle time of Internet connected computers which may be widely distributed across the world, to run a very large and distributed application [5]. It is behind the “@home” philosophy of sharing/donating network connected resources for supporting distributed scientific computing.

Thus, the core idea of such project is to implement a volunteer cloud, an infrastructure built on resources voluntarily shared (for free or by charge) by their owners or administrators, following a volunteer computing approach, and provided to users through a cloud interface, i.e. QoS guaranteed-on demand services. Since this new paradigm merges volunteer and cloud computing goals, has been named Cloud@Home. It can be considered as a generalization and a maturation of the @home philosophy, knocking down the  (hardware and software) barriers of volunteer computing, also allowing to share more general services. In this new paradigm, the user  resources/data center are not only passive interface to cloud services, but they can interact (for free or by charge) with one or more  clouds, that therefore must be able to interoperate.

The Cloud@Home paradigm could be also applied to commercial clouds, establishing an open computing-utility market where users can both buy and sell their services. Since the computing power can be described by a “long-tailed” distribution, in which a high-amplitude population (cloud providers and commercial data centers) is followed by a low-amplitude population (small data centers and private users) which gradually “tails off” asymptotically, Cloud@Home can catch the Long Tail effect [2], providing similar or higher computing capabilities than commercial providers’ data centers, by grouping small computing resources from many single contributors.

We therefore believe that the Cloud@Home paradigm is applicable also at lower scales, from the single contributing user, that shares his/her desktop, to research groups, public administrations, social communities, small and medium enterprises, which make available their distributed computing resources to the cloud. Both free sharing and pay-per-use models can be adopted in such scenarios. It could be a good way to reconvert the investments made on grid computing and similar distributed infrastructures into cloud computing.

Cloud@Home Goals

The Cloud@Home paradigm is inspired by the volunteer computing one. The latter is born for supporting the philosophy of open public computing, implementing an open distributed environment in which resources (not services as in the cloud) can be shared. Volunteer computing is behind the “@home” philosophy of sharing/donating network connected resources for supporting distributed scientific computing. On the other hand, Cloud@Home can be considered as the enhancement of the grid-utility vision of cloud computing. In this new paradigm, user’s hosts are not passive interface to cloud services anymore, but they can interact (for free or by charge) with other clouds.

The scenario we prefigure is composed of several coexisting and interoperable clouds. Open clouds identify groups of shared resources and services operating for free volunteer computing; commercial clouds characterize entities or companies selling their computing resources for business; hybrid clouds can both sell or give for free their services. Both open and hybrid clouds can interoperate with any other cloud, also commercial ones, making of clouds’ federations. In this way an open market of computing resources could be established: a private cloud, in case requires computing resources, buy these from third parties; otherwise, it can sell or give for free its resources to the others.

Figure 1: Cloud@home Reference Scenario

Fig. 1 above depicts the Cloud@Home reference scenario, identified different stakeholder characterized by their role: consuming and/or contributing. Arrows outgoing from the Cloud represent consuming resources, from which a Cloud@Home client submits its requests; otherwise, arrows incoming to the cloud represent contributing resources providing their services to Cloud@Home clients. Therefore, infrastructure providers, datacenters, grids, clusters, servers, till desktops and mobile devices can both contribute and consume.

In fact, we believe that the Cloud@Home paradigm is widely applicable, from research groups, public administrations, social communities, SMEs, which make available their distributed computing resources to the cloud until, potentially, the single contributing user, that autonomously decide to share his/her resources.

According to the Cloud@Home vision, all the users can be, at the same time or in different moments, both clients and active parts of the computing and storage infrastructure. A straightforward application of this concept to the world of mobile devices is not so much useful, because of the limited computing power and storage capacity that are available on such nodes. Still, the opportunity of an active participation of the mobile nodes to the cloud services can be devised if we start considering as resources, not only computing and storage, but also the peculiar and commonly available peripherals/sensors available on mobile phones (e.g., camera, GPS, microphone, accelerometer, ..) or other devices such as the nodes of a sensor network.

If we consider these hardware resources as a mean for acquiring context-related information, an interesting and useful new class of cloud applications can be designed. In the category of context information we can also include the personal information that is available on the device, since it helps to characterize the situation and attributes of the application execution. In other words Cloud@Home, besides virtualizing the computing and storage resources, aims at virtualizing also the sensing infrastructure. Such infrastructure, consistently with the other functionalities, has to be accessed as a service (sensor as a service, SEAAS).

According to this perspective, in Fig. 1 mobile devices are considered as both contributing and consuming resources, since they can provide their sensors to Cloud@Home and/or they can access the Cloud for submitting their requests as common clients, respectively.

The project framework will be based on a Cloud@Home software system which provides readily available functionality in the areas of directory/information services, security and management of resources. In order to implement such a form of computing the following issues should be taken into consideration: Resources management; User interface;  security, accounting, identity management;  virtualization; interoperability among heterogeneous clouds; as well as business models, billing, QoS and SLA management.

Figure 2

A possible rationalization of the tasks and the functionalities the Cloud@Home middleware has to implement can be performed by considering the layered view shown in Fig. 2 above. Three separated layers are there identified in order to apply a separation of concerns and therefore to improve the middleware development process. These are:
 
The Frontend Layer that globally manages resources and services (coordination, discovery, enrollment), implements the user interface for accessing the Cloud (ensuring security reliability and interoperability), and provides QoS and business models and policies management facilities.
 
The Virtual Layer that implements a homogeneous view of the distributed cloud system offered to the higher frontend layer (and therefore to users) in form of two main basic services: the execution service that allows to set up a virtual machine, and the storage service that implements a distributed storage cloud to store data and files as a remote disk, locally mounted or accessed via Web. Virtual sensors provide the access points to the sensing infrastructure. The access is characterized by abstraction and independence from the actual sensing process and equipment.
 
The bottom Physical Layer that provides both the physical resources for elaborating the requests and the software for locally managing such resources. It is composed of a “cloud” of generic nodes and/or devices geographically distributed across the Internet.

Application Scenarios for Cloud@Home

Several possible application scenarios can be imagined for Cloud@Home:

Research Centers, Public Administrations, Communities – the Volunteer computing inspiration of Cloud@Home provides means for the creation of open, interoperable Clouds for supporting scientific purposes, overcoming the portability and compatibility problems highlighted by the @home projects. Similar benefits could be experienced in public administrations and open communities (social network, peer-to-peer, gaming, etc). Through Cloud@Home it could be possible to implement resources and services management policies with QoS requirements (characterizing the scientific project importance) and specifications  (QoS classification of resources and services available). A new deal for volunteer computing, since this latter does not take into consideration QoS, following a best effort approach.

Enterprise Settings – Planting a Cloud@Home computing infrastructure in business-commercial environments can bring considerable benefits, especially in small and medium but also in big enterprises. It could be possible to implement own data center with local, existing, off the shelf, resources: usually in every enterprise there exists a capital of stand-alone computing resources dedicated to a specific task (office automation, monitoring, designing and so on). Since such resources are only (partially) used in office hours, by Internet connecting them altogether it becomes possible to build up a Cloud@Home data center, in which users allocate shared services (web server, file server, archive, database, etc) without any compatibility constraints or problems.

The interoperability among clouds allows to buy computing resources from commercial cloud providers if needed or, otherwise, to sell the local cloud computing resources to the same or different providers. This allows to reduce and optimize business costs according to QoS/SLA policies, improving performances and reliability. For example, this paradigm allows to deal with peaks or burst of workload: data centers could be sized for managing the medium case and worst cases (peaks) could be managed by buying computing resources from cloud providers. Moreover, Cloud@Home drives towards a resources rationalization: all the business processes can be securely managed by web, allocating resources and services where needed. In particular this fact can improve marketing and trading (E-commerce), making available to sellers and customers a lot of customizable services. The interoperability could also point out another scenario, in which private companies buy computing resources in order to resell them (subcontractors).

Ad-hoc Networks, Wireless Sensor Networks, and Home Automation – The cloud computing approach, in which both software and  computing resources are owned and managed by service providers, eases the programmers’ efforts in facing the device heterogeneity problems. Mobile application designers should start to consider that their applications, besides to be usable on a small device, will need to interact with the cloud. Service discovery, brokering, and reliability are important issues, and services are usually designed to interoperate [1]. In order to consider the arising consequences related to the access of mobile users to service-oriented grid architecture, researchers have proposed new concepts such as the one of a mobile dynamic virtual organization [9]. New distributed infrastructures have been designed to facilitate the extension of clouds to the wireless edge of the Internet. Among them, the mobile service clouds enables dynamic instantiation, composition, configuration, and reconfiguration of services on an overlay network to support mobile computing [7].

A still open research issue is whether or not a mobile device should be considered as a service provider of the cloud itself. The use of modern mobile terminals such as smart-phones not just as Web service requestors, but also as mobile hosts that can themselves offer services in a true mobile peer-to-peer setting is also discussed in [8]. Context aware operations involving control and monitoring, data sharing, synchronization, etc, could be implemented and exposed as Cloud@Home Web services involving wireless and Bluetooth devices, laptop, Ipod, cellphone, household appliances, and so on. Cloud@Home could be a way for implementing ubiquitous and pervasive computing: many computational devices and systems can be engaged simultaneously for performing ordinary activities, and may not necessarily be aware that they are doing so.

About the Authors

Dr. Salvatore Distefano received the master’s degree in computer science engineering from the University of Catania in October 2001. In 2006, he received the PhD degree on “Advanced Technologies for the Information Engineering” from the University of Messina.

His research interests include performance evalua- tion, parallel and distributed computing, software engineering, and reliability techniques. During his research activity, he participated in the
development of the WebSPN and the ArgoPerformance tools. He has been involved in several national and international research projects. At this time, he is a postdoctoral researcher at the University of Messina.

Dr. Antonio Puliafito is a full professor of computer engineering at the University of Messina, Italy. His interests include parallel and distributed systems, networking, wireless, and GRID com- puting. He was a referee for the European Community for the projects of the Fourth, Fifth, Sixth, and Seventh Framework Program. He has contributed to the development of the software tools WebSPN, MAP, and ArgoPerformance.

He is a coauthor (with R. Sahner and K.S. Trivedi)of the text Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package (Kluwer Academic Publishers). He is the vice president of Consorzio Cometa, which is currently managing the Sicilian grid infrastructure.

Note: This work has been partially supported by MIUR through the “Programma di Ricerca Scientifica di Rilevante Interesse Nazionale 2008” (PRIN 2008) under grant no. 2008PXNBFZ “Cloud@Home: a new enhanced computing paradigm”.

References

[1] The Programmable Web. http://www.programmableweb.com/.

[2] Chris Anderson. The Long Tail: How Endless Choice Is Creating Unlimited Demand. Random House Business Books, July 2006.

[3] David P. Anderson and Gilles Fedak. The computational and storage potential of volunteer computing. In CCGRID ’06, pages 73–80.

[4] Stephen Baker. Google and the Wisdom of Clouds. BusinessWeek, (December 24 2008), Dec. 2008. http://www.businessweek.com/magazine/content/07 52/b4064048925836.htm.

[5] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: a generic global computing system. Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pages 582–587, 2001.

[6] Richard Martin. The Red Shift Theory. InformationWeek, (August 20 2007), Aug. 2007. http://www.informationweek.com/news/hardware/showArticle.jhtml?articleID=201800873.

[7] F. A. Samimi, P. K. McKinley, and S. M. Sadjadi. Mobile service clouds: A self-managing infrastructure for autonomic mobile computing services. In LCNS 3996, pages 130–141. Springer-Verlang, 2006.

[8] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile web service provisioning. In AICT-ICIW ’06: Proceedings of the Advanced Int’l Conference on Telecommunications and Int’l Conference on Internet and Web Applications and Services, page 120, Washington, DC, USA, 2006. IEEE Computer Society.

[9] M. Waldburger and B. Stiller. ”toward the mobile grid:service provisioning in a mobile dynamic virtual organization”. In IEEE International Conference on Computer Systems and Applications, pages 579–583, 2006.

[10] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David Kramer, and Wolfgang Karl. Scientific Cloud Computing: Early Definition and Experience. In HPCC ’08, pages 825–830.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This