Cloud@Home: Goals, Challenges and Benefits of a Volunteer Cloud

By Dr. Salvatore Distefano and Dr. Antonio Puliafito

March 17, 2011

Cloud computing is emerging as a promising paradigm capable of providing a flexible, dynamic, resilient and cost effective  infrastructure for both academic and business environments. It aims at raising the level of abstraction of physical resources toward  a “user-centric” perspective, focused on the concept of service as the elementary unit for building any application. All the cloud’s  resources, both physical/hardware and logical/abstract (software, data, etc) are therefore considered “as a service” and so all cloud’s  design and implementation choices follow a “service oriented” philosophy.

Cloud is actually a real, operating and effective solution in commercial and business context, offering computing resources and services for renting, accessed through the Web according to a client-server paradigm regulated by specific SLA. In fact, several  commercial solutions and infrastructure providers make business on Cloud, such as Amazon EC2 and S3 IBM’s Blue Cloud, Sun  Network.com, Microsoft Azure Services Platform, and so on.

Recently cloud computing has been quickly and widely spreading in open contexts such as scientific, academic and social communities, due to the increasing demand of computing resources required by their  users. For example, there are several research activities and projects on Cloud, such as Nimbus, Eucalyptus, OpenNEbula, Reservoir,  OpenCyrrus, OCCI, etc., aimed at implementing their open infrastructure providing a specific middleware.

Among the reasons behind the success of cloud, outside of the potential for lower costs, there are other considerations, including the user-centric interface that acts as a unique, user friendly, point of access for users’ needs and requirements; on-demand service provisioning; the QoS guaranteed offer, and the autonomous system for managing hardware, software and data transparently to users [10].

But, on the other hand, there are different open problems in cloud infrastructures that inhibit their use mainly concerning information security (confidentiality and integrity), trustiness, interoperability, reliability, availability and other QoS requirements specified in the SLA, etc., only partially addressed or sometimes still uncovered. Besides, several organizations made important investments in grid and similar distributed infrastructures over the last several years: what to do with these? Discard or reuse? How to reuse?

Moreover, the rise of the “techno-utility complex” and the corresponding increase of computing resources demand, in some cases growing dramatically faster than Moore’s Law as predicted by the Sun CTO Greg Papadopoulos in the red shift theory for IT [6], could bring, in a close future, towards an oligarchy, a lobby or a trust of few big companies controlling the whole computing resources market.

To avoid such pessimistic but achievable scenario, we suggest to address the problem in a different way: instead of building costly private data centers that Google CEO Eric Schmidt likes to compare to the prohibitively expensive cyclotrons [4], we propose a more “democratic” form of cloud computing, in which the computing resources of a single user, company, and/or community accessing the cloud can be shared with the others, in order to contribute to the elaboration of complex problems.

In order to implement such idea, a possible source of inspiration could be the volunteer computing paradigm. Volunteer computing (also called Peer-to-Peer computing, Global computing or public computing) uses computers volunteered by their owners, as a source of computing power and storage to provide distributed scientific computing [3]. The key idea of volunteer computing is to harvest the idle time of Internet connected computers which may be widely distributed across the world, to run a very large and distributed application [5]. It is behind the “@home” philosophy of sharing/donating network connected resources for supporting distributed scientific computing.

Thus, the core idea of such project is to implement a volunteer cloud, an infrastructure built on resources voluntarily shared (for free or by charge) by their owners or administrators, following a volunteer computing approach, and provided to users through a cloud interface, i.e. QoS guaranteed-on demand services. Since this new paradigm merges volunteer and cloud computing goals, has been named Cloud@Home. It can be considered as a generalization and a maturation of the @home philosophy, knocking down the  (hardware and software) barriers of volunteer computing, also allowing to share more general services. In this new paradigm, the user  resources/data center are not only passive interface to cloud services, but they can interact (for free or by charge) with one or more  clouds, that therefore must be able to interoperate.

The Cloud@Home paradigm could be also applied to commercial clouds, establishing an open computing-utility market where users can both buy and sell their services. Since the computing power can be described by a “long-tailed” distribution, in which a high-amplitude population (cloud providers and commercial data centers) is followed by a low-amplitude population (small data centers and private users) which gradually “tails off” asymptotically, Cloud@Home can catch the Long Tail effect [2], providing similar or higher computing capabilities than commercial providers’ data centers, by grouping small computing resources from many single contributors.

We therefore believe that the Cloud@Home paradigm is applicable also at lower scales, from the single contributing user, that shares his/her desktop, to research groups, public administrations, social communities, small and medium enterprises, which make available their distributed computing resources to the cloud. Both free sharing and pay-per-use models can be adopted in such scenarios. It could be a good way to reconvert the investments made on grid computing and similar distributed infrastructures into cloud computing.

Cloud@Home Goals

The Cloud@Home paradigm is inspired by the volunteer computing one. The latter is born for supporting the philosophy of open public computing, implementing an open distributed environment in which resources (not services as in the cloud) can be shared. Volunteer computing is behind the “@home” philosophy of sharing/donating network connected resources for supporting distributed scientific computing. On the other hand, Cloud@Home can be considered as the enhancement of the grid-utility vision of cloud computing. In this new paradigm, user’s hosts are not passive interface to cloud services anymore, but they can interact (for free or by charge) with other clouds.

The scenario we prefigure is composed of several coexisting and interoperable clouds. Open clouds identify groups of shared resources and services operating for free volunteer computing; commercial clouds characterize entities or companies selling their computing resources for business; hybrid clouds can both sell or give for free their services. Both open and hybrid clouds can interoperate with any other cloud, also commercial ones, making of clouds’ federations. In this way an open market of computing resources could be established: a private cloud, in case requires computing resources, buy these from third parties; otherwise, it can sell or give for free its resources to the others.

Figure 1: Cloud@home Reference Scenario

Fig. 1 above depicts the Cloud@Home reference scenario, identified different stakeholder characterized by their role: consuming and/or contributing. Arrows outgoing from the Cloud represent consuming resources, from which a Cloud@Home client submits its requests; otherwise, arrows incoming to the cloud represent contributing resources providing their services to Cloud@Home clients. Therefore, infrastructure providers, datacenters, grids, clusters, servers, till desktops and mobile devices can both contribute and consume.

In fact, we believe that the Cloud@Home paradigm is widely applicable, from research groups, public administrations, social communities, SMEs, which make available their distributed computing resources to the cloud until, potentially, the single contributing user, that autonomously decide to share his/her resources.

According to the Cloud@Home vision, all the users can be, at the same time or in different moments, both clients and active parts of the computing and storage infrastructure. A straightforward application of this concept to the world of mobile devices is not so much useful, because of the limited computing power and storage capacity that are available on such nodes. Still, the opportunity of an active participation of the mobile nodes to the cloud services can be devised if we start considering as resources, not only computing and storage, but also the peculiar and commonly available peripherals/sensors available on mobile phones (e.g., camera, GPS, microphone, accelerometer, ..) or other devices such as the nodes of a sensor network.

If we consider these hardware resources as a mean for acquiring context-related information, an interesting and useful new class of cloud applications can be designed. In the category of context information we can also include the personal information that is available on the device, since it helps to characterize the situation and attributes of the application execution. In other words Cloud@Home, besides virtualizing the computing and storage resources, aims at virtualizing also the sensing infrastructure. Such infrastructure, consistently with the other functionalities, has to be accessed as a service (sensor as a service, SEAAS).

According to this perspective, in Fig. 1 mobile devices are considered as both contributing and consuming resources, since they can provide their sensors to Cloud@Home and/or they can access the Cloud for submitting their requests as common clients, respectively.

The project framework will be based on a Cloud@Home software system which provides readily available functionality in the areas of directory/information services, security and management of resources. In order to implement such a form of computing the following issues should be taken into consideration: Resources management; User interface;  security, accounting, identity management;  virtualization; interoperability among heterogeneous clouds; as well as business models, billing, QoS and SLA management.

Figure 2

A possible rationalization of the tasks and the functionalities the Cloud@Home middleware has to implement can be performed by considering the layered view shown in Fig. 2 above. Three separated layers are there identified in order to apply a separation of concerns and therefore to improve the middleware development process. These are:
 
The Frontend Layer that globally manages resources and services (coordination, discovery, enrollment), implements the user interface for accessing the Cloud (ensuring security reliability and interoperability), and provides QoS and business models and policies management facilities.
 
The Virtual Layer that implements a homogeneous view of the distributed cloud system offered to the higher frontend layer (and therefore to users) in form of two main basic services: the execution service that allows to set up a virtual machine, and the storage service that implements a distributed storage cloud to store data and files as a remote disk, locally mounted or accessed via Web. Virtual sensors provide the access points to the sensing infrastructure. The access is characterized by abstraction and independence from the actual sensing process and equipment.
 
The bottom Physical Layer that provides both the physical resources for elaborating the requests and the software for locally managing such resources. It is composed of a “cloud” of generic nodes and/or devices geographically distributed across the Internet.

Application Scenarios for Cloud@Home

Several possible application scenarios can be imagined for Cloud@Home:

Research Centers, Public Administrations, Communities – the Volunteer computing inspiration of Cloud@Home provides means for the creation of open, interoperable Clouds for supporting scientific purposes, overcoming the portability and compatibility problems highlighted by the @home projects. Similar benefits could be experienced in public administrations and open communities (social network, peer-to-peer, gaming, etc). Through Cloud@Home it could be possible to implement resources and services management policies with QoS requirements (characterizing the scientific project importance) and specifications  (QoS classification of resources and services available). A new deal for volunteer computing, since this latter does not take into consideration QoS, following a best effort approach.

Enterprise Settings – Planting a Cloud@Home computing infrastructure in business-commercial environments can bring considerable benefits, especially in small and medium but also in big enterprises. It could be possible to implement own data center with local, existing, off the shelf, resources: usually in every enterprise there exists a capital of stand-alone computing resources dedicated to a specific task (office automation, monitoring, designing and so on). Since such resources are only (partially) used in office hours, by Internet connecting them altogether it becomes possible to build up a Cloud@Home data center, in which users allocate shared services (web server, file server, archive, database, etc) without any compatibility constraints or problems.

The interoperability among clouds allows to buy computing resources from commercial cloud providers if needed or, otherwise, to sell the local cloud computing resources to the same or different providers. This allows to reduce and optimize business costs according to QoS/SLA policies, improving performances and reliability. For example, this paradigm allows to deal with peaks or burst of workload: data centers could be sized for managing the medium case and worst cases (peaks) could be managed by buying computing resources from cloud providers. Moreover, Cloud@Home drives towards a resources rationalization: all the business processes can be securely managed by web, allocating resources and services where needed. In particular this fact can improve marketing and trading (E-commerce), making available to sellers and customers a lot of customizable services. The interoperability could also point out another scenario, in which private companies buy computing resources in order to resell them (subcontractors).

Ad-hoc Networks, Wireless Sensor Networks, and Home Automation – The cloud computing approach, in which both software and  computing resources are owned and managed by service providers, eases the programmers’ efforts in facing the device heterogeneity problems. Mobile application designers should start to consider that their applications, besides to be usable on a small device, will need to interact with the cloud. Service discovery, brokering, and reliability are important issues, and services are usually designed to interoperate [1]. In order to consider the arising consequences related to the access of mobile users to service-oriented grid architecture, researchers have proposed new concepts such as the one of a mobile dynamic virtual organization [9]. New distributed infrastructures have been designed to facilitate the extension of clouds to the wireless edge of the Internet. Among them, the mobile service clouds enables dynamic instantiation, composition, configuration, and reconfiguration of services on an overlay network to support mobile computing [7].

A still open research issue is whether or not a mobile device should be considered as a service provider of the cloud itself. The use of modern mobile terminals such as smart-phones not just as Web service requestors, but also as mobile hosts that can themselves offer services in a true mobile peer-to-peer setting is also discussed in [8]. Context aware operations involving control and monitoring, data sharing, synchronization, etc, could be implemented and exposed as Cloud@Home Web services involving wireless and Bluetooth devices, laptop, Ipod, cellphone, household appliances, and so on. Cloud@Home could be a way for implementing ubiquitous and pervasive computing: many computational devices and systems can be engaged simultaneously for performing ordinary activities, and may not necessarily be aware that they are doing so.

About the Authors

Dr. Salvatore Distefano received the master’s degree in computer science engineering from the University of Catania in October 2001. In 2006, he received the PhD degree on “Advanced Technologies for the Information Engineering” from the University of Messina.

His research interests include performance evalua- tion, parallel and distributed computing, software engineering, and reliability techniques. During his research activity, he participated in the
development of the WebSPN and the ArgoPerformance tools. He has been involved in several national and international research projects. At this time, he is a postdoctoral researcher at the University of Messina.

Dr. Antonio Puliafito is a full professor of computer engineering at the University of Messina, Italy. His interests include parallel and distributed systems, networking, wireless, and GRID com- puting. He was a referee for the European Community for the projects of the Fourth, Fifth, Sixth, and Seventh Framework Program. He has contributed to the development of the software tools WebSPN, MAP, and ArgoPerformance.

He is a coauthor (with R. Sahner and K.S. Trivedi)of the text Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package (Kluwer Academic Publishers). He is the vice president of Consorzio Cometa, which is currently managing the Sicilian grid infrastructure.

Note: This work has been partially supported by MIUR through the “Programma di Ricerca Scientifica di Rilevante Interesse Nazionale 2008” (PRIN 2008) under grant no. 2008PXNBFZ “Cloud@Home: a new enhanced computing paradigm”.

References

[1] The Programmable Web. http://www.programmableweb.com/.

[2] Chris Anderson. The Long Tail: How Endless Choice Is Creating Unlimited Demand. Random House Business Books, July 2006.

[3] David P. Anderson and Gilles Fedak. The computational and storage potential of volunteer computing. In CCGRID ’06, pages 73–80.

[4] Stephen Baker. Google and the Wisdom of Clouds. BusinessWeek, (December 24 2008), Dec. 2008. http://www.businessweek.com/magazine/content/07 52/b4064048925836.htm.

[5] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: a generic global computing system. Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pages 582–587, 2001.

[6] Richard Martin. The Red Shift Theory. InformationWeek, (August 20 2007), Aug. 2007. http://www.informationweek.com/news/hardware/showArticle.jhtml?articleID=201800873.

[7] F. A. Samimi, P. K. McKinley, and S. M. Sadjadi. Mobile service clouds: A self-managing infrastructure for autonomic mobile computing services. In LCNS 3996, pages 130–141. Springer-Verlang, 2006.

[8] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile web service provisioning. In AICT-ICIW ’06: Proceedings of the Advanced Int’l Conference on Telecommunications and Int’l Conference on Internet and Web Applications and Services, page 120, Washington, DC, USA, 2006. IEEE Computer Society.

[9] M. Waldburger and B. Stiller. ”toward the mobile grid:service provisioning in a mobile dynamic virtual organization”. In IEEE International Conference on Computer Systems and Applications, pages 579–583, 2006.

[10] Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David Kramer, and Wolfgang Karl. Scientific Cloud Computing: Early Definition and Experience. In HPCC ’08, pages 825–830.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This