Intel Charts Path to Microserver Business

By Michael Feldman

March 17, 2011

This week Intel announced its intention to deliver chips for the burgeoning microserver market. Microservers are envisioned as the next big thing in hyperscale datacenters that are delivering Web content and lightweight software apps for the masses.

That market is being carved out by vendors like SeaMicro, Marvell, Dell, Tilera, Calxeda, and some others, who envision a growing opportunity for datacenter workloads that don’t need energy-sucking Xeons or Opterons to do their job. A handful of these enterprising companies have developed their first-generation microservers, mostly based on inexpensive, power-sipping Atom and ARM processors. In fact, because of the scale of these Internet datacenters, energy efficiency, price-performance, and density have become the prime considerations for building Web-based infrastructure.

Intel sees this market as comprising no more than 10 percent of overall server sales over the next four or five years, but that is large enough to get the chipmaker’s attention. The company’s announcement this week revealed a roadmap that includes both Xeon and Atom x86 processors aimed at the microserver space. That includes its recently released E3-1260L and E3-1220L Xeon chips, rated at 45 and 20 watts, respectively. In the second half of 2011, the company plans to deliver a 15-watt Sandy Bridge server part for this market. The first Atom server chip doesn’t arrive until 2012, and Intel is spec’ing that chip to come in at somewhere under 10 watts.

That didn’t stop SeaMicro from jumping the gun and building microservers with the just-released Atom N570, a 64-bit dual-core chip that has a TDP of just 8.5 watts. The new gear, announced last month, is an upgrade from the original SeaMicro server the company introduced in 2010, which used 32-bit single-core Atom N530 processors. Now SeaMicro has latched on to the up-market N570 (officially targeted for netbooks and notebooks) and is putting 256 of them in a 10U box. The CPUs are connected via SeaMicro’s proprietary fabric that delivers up to 1.28 terabits/second of aggregate bandwidth. In all, a nifty little 512-core x86 server that lists for $148,000.

So what does all this have to do with high performance computing? Right now, not a whole lot. From a performance point of view these x86 microserver chips are pretty wimpy compared to their more muscular Xeon brethren. For example, the quad-core E3-1260L runs at just 2.4 GHz compared to a traditional HPC-worthy Xeon, like the quad-core 3.2 GHz X5672. The E3-1260L also has only two memory channels versus three for the X5672, and only 8 MB of cache versus 12 MB for the X5672.

Basically you get about two-thirds of an HPC chip that uses about half the power. That might sound like a good trade-off until you consider that the E3’s are designed only for single-socket machines, so you would have to buy twice as many servers to get the same number of cores as in a traditional dual-socket box.

The starker contrast is the Atom N570 being used in the new SeaMicro gear. That processor runs at just 1.6 GHz, sports only 1 MB of cache, and can support a maximum of 4 GB of memory. (Oh, and as far as I can tell, there’s no support for ECC memory in any of the current Atom chips.) With half the number of cores running at half the speed, and with much less cache and memory, N570 performance will be just a fraction of the X5672’s.

On the other hand, at 8.5 watts, the power draw on the N570 is less than a tenth that of the X5672. And here’s the real kicker: the Atom is just $86 in quantities of a thousand. That’s about 1/16 the $1,440 price listed for the Xeon part.

The future Atom silicon that Intel will be officially targeting for microservers is likely to be more performant than the current N570 (and presumably include ECC as well). But the chipmaker has to thread a needle here. It can’t sell Xeons at $1,000-plus a pop if it’s also offering $100 Atoms that are just a few time slower. The ARM makers, by the way, will have no such conflict.

Intel imagines there’s some continuum of workloads, where 90 percent of users will stick with the faster CPUs represented by the traditional Xeon parts, and the rest will want stripped-down Xeons or pumped-up Atoms. The rationale is that many enterprise codes still rely on single-core performance and can’t be parallelized into a gazillion threads that take advantage of voluminous low-performing cores.

But many Web serving applications, like Facebook or Google search, naturally decompose into multiple threads that run more or less independently from one another, and without any messy virtualization. Also, these codes tend not to do a great deal of number crunching, which is just fine for Atom and ARM chips since they are not particular adept at executing more complex operations like floating point instructions.

That’s not to say these first-generation microservers are worthless for high performance computing. Where codes are easily decomposed into embarrassingly parallel execution and don’t rely on lots of floating point performance (like genetic sequencing apps), this simplified architecture could find great utility.

The truth is, though, no one really knows how the microserver business will play out or even what the size of the market will be. Web applications are evolving rapidly and may end up needing more powerful processors than recycled ARM or Atom designs. But Intel’s entry into the market marks something of a turning point. When the biggest chipmaker in the world decides to go after a smaller, lower margin market, we should assume it has done so for a very good reason.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire