Intel Charts Path to Microserver Business

By Michael Feldman

March 17, 2011

This week Intel announced its intention to deliver chips for the burgeoning microserver market. Microservers are envisioned as the next big thing in hyperscale datacenters that are delivering Web content and lightweight software apps for the masses.

That market is being carved out by vendors like SeaMicro, Marvell, Dell, Tilera, Calxeda, and some others, who envision a growing opportunity for datacenter workloads that don’t need energy-sucking Xeons or Opterons to do their job. A handful of these enterprising companies have developed their first-generation microservers, mostly based on inexpensive, power-sipping Atom and ARM processors. In fact, because of the scale of these Internet datacenters, energy efficiency, price-performance, and density have become the prime considerations for building Web-based infrastructure.

Intel sees this market as comprising no more than 10 percent of overall server sales over the next four or five years, but that is large enough to get the chipmaker’s attention. The company’s announcement this week revealed a roadmap that includes both Xeon and Atom x86 processors aimed at the microserver space. That includes its recently released E3-1260L and E3-1220L Xeon chips, rated at 45 and 20 watts, respectively. In the second half of 2011, the company plans to deliver a 15-watt Sandy Bridge server part for this market. The first Atom server chip doesn’t arrive until 2012, and Intel is spec’ing that chip to come in at somewhere under 10 watts.

That didn’t stop SeaMicro from jumping the gun and building microservers with the just-released Atom N570, a 64-bit dual-core chip that has a TDP of just 8.5 watts. The new gear, announced last month, is an upgrade from the original SeaMicro server the company introduced in 2010, which used 32-bit single-core Atom N530 processors. Now SeaMicro has latched on to the up-market N570 (officially targeted for netbooks and notebooks) and is putting 256 of them in a 10U box. The CPUs are connected via SeaMicro’s proprietary fabric that delivers up to 1.28 terabits/second of aggregate bandwidth. In all, a nifty little 512-core x86 server that lists for $148,000.

So what does all this have to do with high performance computing? Right now, not a whole lot. From a performance point of view these x86 microserver chips are pretty wimpy compared to their more muscular Xeon brethren. For example, the quad-core E3-1260L runs at just 2.4 GHz compared to a traditional HPC-worthy Xeon, like the quad-core 3.2 GHz X5672. The E3-1260L also has only two memory channels versus three for the X5672, and only 8 MB of cache versus 12 MB for the X5672.

Basically you get about two-thirds of an HPC chip that uses about half the power. That might sound like a good trade-off until you consider that the E3’s are designed only for single-socket machines, so you would have to buy twice as many servers to get the same number of cores as in a traditional dual-socket box.

The starker contrast is the Atom N570 being used in the new SeaMicro gear. That processor runs at just 1.6 GHz, sports only 1 MB of cache, and can support a maximum of 4 GB of memory. (Oh, and as far as I can tell, there’s no support for ECC memory in any of the current Atom chips.) With half the number of cores running at half the speed, and with much less cache and memory, N570 performance will be just a fraction of the X5672’s.

On the other hand, at 8.5 watts, the power draw on the N570 is less than a tenth that of the X5672. And here’s the real kicker: the Atom is just $86 in quantities of a thousand. That’s about 1/16 the $1,440 price listed for the Xeon part.

The future Atom silicon that Intel will be officially targeting for microservers is likely to be more performant than the current N570 (and presumably include ECC as well). But the chipmaker has to thread a needle here. It can’t sell Xeons at $1,000-plus a pop if it’s also offering $100 Atoms that are just a few time slower. The ARM makers, by the way, will have no such conflict.

Intel imagines there’s some continuum of workloads, where 90 percent of users will stick with the faster CPUs represented by the traditional Xeon parts, and the rest will want stripped-down Xeons or pumped-up Atoms. The rationale is that many enterprise codes still rely on single-core performance and can’t be parallelized into a gazillion threads that take advantage of voluminous low-performing cores.

But many Web serving applications, like Facebook or Google search, naturally decompose into multiple threads that run more or less independently from one another, and without any messy virtualization. Also, these codes tend not to do a great deal of number crunching, which is just fine for Atom and ARM chips since they are not particular adept at executing more complex operations like floating point instructions.

That’s not to say these first-generation microservers are worthless for high performance computing. Where codes are easily decomposed into embarrassingly parallel execution and don’t rely on lots of floating point performance (like genetic sequencing apps), this simplified architecture could find great utility.

The truth is, though, no one really knows how the microserver business will play out or even what the size of the market will be. Web applications are evolving rapidly and may end up needing more powerful processors than recycled ARM or Atom designs. But Intel’s entry into the market marks something of a turning point. When the biggest chipmaker in the world decides to go after a smaller, lower margin market, we should assume it has done so for a very good reason.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This