Intel Charts Path to Microserver Business

By Michael Feldman

March 17, 2011

This week Intel announced its intention to deliver chips for the burgeoning microserver market. Microservers are envisioned as the next big thing in hyperscale datacenters that are delivering Web content and lightweight software apps for the masses.

That market is being carved out by vendors like SeaMicro, Marvell, Dell, Tilera, Calxeda, and some others, who envision a growing opportunity for datacenter workloads that don’t need energy-sucking Xeons or Opterons to do their job. A handful of these enterprising companies have developed their first-generation microservers, mostly based on inexpensive, power-sipping Atom and ARM processors. In fact, because of the scale of these Internet datacenters, energy efficiency, price-performance, and density have become the prime considerations for building Web-based infrastructure.

Intel sees this market as comprising no more than 10 percent of overall server sales over the next four or five years, but that is large enough to get the chipmaker’s attention. The company’s announcement this week revealed a roadmap that includes both Xeon and Atom x86 processors aimed at the microserver space. That includes its recently released E3-1260L and E3-1220L Xeon chips, rated at 45 and 20 watts, respectively. In the second half of 2011, the company plans to deliver a 15-watt Sandy Bridge server part for this market. The first Atom server chip doesn’t arrive until 2012, and Intel is spec’ing that chip to come in at somewhere under 10 watts.

That didn’t stop SeaMicro from jumping the gun and building microservers with the just-released Atom N570, a 64-bit dual-core chip that has a TDP of just 8.5 watts. The new gear, announced last month, is an upgrade from the original SeaMicro server the company introduced in 2010, which used 32-bit single-core Atom N530 processors. Now SeaMicro has latched on to the up-market N570 (officially targeted for netbooks and notebooks) and is putting 256 of them in a 10U box. The CPUs are connected via SeaMicro’s proprietary fabric that delivers up to 1.28 terabits/second of aggregate bandwidth. In all, a nifty little 512-core x86 server that lists for $148,000.

So what does all this have to do with high performance computing? Right now, not a whole lot. From a performance point of view these x86 microserver chips are pretty wimpy compared to their more muscular Xeon brethren. For example, the quad-core E3-1260L runs at just 2.4 GHz compared to a traditional HPC-worthy Xeon, like the quad-core 3.2 GHz X5672. The E3-1260L also has only two memory channels versus three for the X5672, and only 8 MB of cache versus 12 MB for the X5672.

Basically you get about two-thirds of an HPC chip that uses about half the power. That might sound like a good trade-off until you consider that the E3’s are designed only for single-socket machines, so you would have to buy twice as many servers to get the same number of cores as in a traditional dual-socket box.

The starker contrast is the Atom N570 being used in the new SeaMicro gear. That processor runs at just 1.6 GHz, sports only 1 MB of cache, and can support a maximum of 4 GB of memory. (Oh, and as far as I can tell, there’s no support for ECC memory in any of the current Atom chips.) With half the number of cores running at half the speed, and with much less cache and memory, N570 performance will be just a fraction of the X5672’s.

On the other hand, at 8.5 watts, the power draw on the N570 is less than a tenth that of the X5672. And here’s the real kicker: the Atom is just $86 in quantities of a thousand. That’s about 1/16 the $1,440 price listed for the Xeon part.

The future Atom silicon that Intel will be officially targeting for microservers is likely to be more performant than the current N570 (and presumably include ECC as well). But the chipmaker has to thread a needle here. It can’t sell Xeons at $1,000-plus a pop if it’s also offering $100 Atoms that are just a few time slower. The ARM makers, by the way, will have no such conflict.

Intel imagines there’s some continuum of workloads, where 90 percent of users will stick with the faster CPUs represented by the traditional Xeon parts, and the rest will want stripped-down Xeons or pumped-up Atoms. The rationale is that many enterprise codes still rely on single-core performance and can’t be parallelized into a gazillion threads that take advantage of voluminous low-performing cores.

But many Web serving applications, like Facebook or Google search, naturally decompose into multiple threads that run more or less independently from one another, and without any messy virtualization. Also, these codes tend not to do a great deal of number crunching, which is just fine for Atom and ARM chips since they are not particular adept at executing more complex operations like floating point instructions.

That’s not to say these first-generation microservers are worthless for high performance computing. Where codes are easily decomposed into embarrassingly parallel execution and don’t rely on lots of floating point performance (like genetic sequencing apps), this simplified architecture could find great utility.

The truth is, though, no one really knows how the microserver business will play out or even what the size of the market will be. Web applications are evolving rapidly and may end up needing more powerful processors than recycled ARM or Atom designs. But Intel’s entry into the market marks something of a turning point. When the biggest chipmaker in the world decides to go after a smaller, lower margin market, we should assume it has done so for a very good reason.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This