Clouds Set to Make Smart Grids Smarter

By Nicole Hemsoth

March 21, 2011

The United Nations estimates that in 2009, the world’s population was officially evenly split between rural and urban areas. However, this figure is not a static one—the organization contends that by 2050, almost 70 percent of the projected 9.1 people living on the planet will be living in cities.

Leaving aside the multiple matters tied to population growth in general, if the urban migration figures are correct, cities are going to have to find far more sustainable ways to power their cities—a matter that can be addressed by streamlining, and in some cases reconstructing, IT infrastructure.

A recent report by Microsoft, called “The Central Role of Cloud Computing in Making Cities Energy-Smart” examined the pending urban population push with a focus on refining city energy infrastructure. The authors claim that in order for cities to thrive in the wake of population explosions, they will “need to radically evolve their infrastructures.” This includes water, waste and other crucial systems, but as the report notes, it is “the evolution of energy infrastructure, in particular, that presents an important opportunity to make major reductions in GHG emissions, support economic development and maintain high quality of life in our cities.”

While at one time energy might have only meant power stations and the way electricity was served, the tide is changing. Now, instead of buildings (and a growing range of other structures and devices) being simply consumers of electricity, they are also producing it and sending it back to the grid.

This give and take relationship in the energy grid goes beyond buildings sending energy as well as consuming it. Newer modes of power generation and consumption like electric vehicles which consume power but also use their battery stores to send power back to the grid are on the horizon as are a number of other renewable systems to send and receive energy.

The problem now is to architect a system that takes these logistical problems of the smart grid and manages the complexity efficiently and in a manner that actually enhances power generation and dispersal. In other words, the time has come to turn those massive, power-chugging cloud data centers into the sources of more streamlined, efficient energy use and distribution—forcing them into their own sort of “give and take” relationship.

Maximizing the Power of Smart Grids

Today IBM and British Cable and Wireless announced that they were collaborating on a cloud computing system to monitor the use of power in over 50 million homes via their smart meters. The project, called the “UK Smart Energy Cloud” will “gather data many times a day from smart meters around the country and store it in a cloud hosted within the country. This data then will be sent to power utilities for analysis to aid in better planning for peak loads.

Smart meters have emerged to let utility companies will be more proficient in gauging demand, thus allowing them to plan ahead to prevent outages. While there are other potential benefits for smart meters, including the ability for customers to see when their electricity is cheapest, the goal to maximize energy use is paramount—both for consumers and power companies.

For true revolutionizing of energy infrastructure, however, it will take a great deal more IT horsepower since smart metering alone cannot provide the efficiency required for the big urban boom.  A more integrated approach using information accessible anywhere via cloud-based platforms is needed. This is especially important because the nature of power operations is changing with far more “give back” via wind and other generation mechanisms that allow consumers to shift to providers.

There is no easy task in this mission to build sustainable IT infrastructures, according to Chris Johnston from the Network-Ready device unit at AT&T. He states that “Ultimately, the grid may be transformed into a wirelessly-controlled, digital network capable of handling complex, multi-directional flows of power. Communications and computing must be both cost effective and easy to install.  These criteria greatly favor wireless communications and cloud computing. Companies capable of delivering the necessary wireless communications and cloud computing functionality must also be armed with outstanding service level agreements and disaster recovery capabilities.”

The Microsoft report also gave a hat tip to this complexity, noting that “the coordination of all of those supply sources is complex and requires significant understanding of where, when and how much power is available to satisfy the energy demands of growing cities. This is of course why the integration of sensors, monitoring equipment, advanced control systems and information technologies to collect this supply-side data and turn it into useful, actionable information is important.”

A Data Market for Energy Efficiency

As more renewable energy sources become more pervasive, bringing with them a need to interact with the grid (versus simply be a consumer of its resources) there will need to be a way to merge these elements into the infrastructure. As the Microsoft report on this issue noted, “optimizing energy efficiency across these interconnected systems at the city level requires the secure and reliable collection of massive amounts of data from sensors, meters and controls embedded within these complex systems.

In Microsoft’s view, cloud computing could be the key to providing a flexible platform to bring together these disparate sensors, meters and measurements so that energy efficiency can be streamlined into one system. They note that “developers will be able to deliver new solutions, such as weather forecasts, energy pricing and traffic conditions.” Along with this is other data that can be particularly useful when culled into the big picture cloud platform. This could include building occupancy, energy performance, manufacturing and other activity and even shipping or distribution schedules.

To help developers focused on building smarter city infrastructures, Microsoft has opened its Windows Azure DataMarket, which the company claims will enable “the discovery, exploration and consumption of data from trusted public domains and commercial data sources such as demographics, health, location-based services, real estate, science, transportation, navigation, weather, finance, etc.”  This market for data also provides visualizations and analytics to help developers “see” the data and its wider implications.

In essence, by providing a complex “mashup” of this data, developers will be to create total systems that are integrated for energy efficiency by use of the vast amount of data pertaining to urban elements that might, at first anyway, appear to have little to do with the grid. In short, “applications and services that leverage such a diverse portfolio of disparate data sets will enable new insights for citizens, governments and utilities on how to manage energy infrastructure in real time.”

The company notes that developers can make use of this data on any platform and can incorporate the data via a common API to mobile, desktop and web-based applications. This centralization of information for energy efficient planning (and beyond, the commercial applications are limited only by imagination—and will likely be the primary use) will allow developers unprecedented ease in terms of creating specific local mashups to aid in effective energy use and distribution.

The report out of Redmond, “IT for Energy Smart Cities” notes that this movement to cull data from a range of source to aid in more efficient energy distribution and use is already taking shape. It notes that ISVs are system integrators are already “taking advantage of high performance and cloud computing platforms to deliver solutions and services that address the needs of this evolving energy infrastructure.” According to Microsoft, many of these ISVs and Sis are already players in the power and grid space and are pulling together pieces of information related to everything from building design and management to transportation systems.

Microsoft claims that the “work to evolve energy smart cities is focusing on these major intersecting infrastructures—power generation and grid, buildings, transportation systems and the security, privacy, reliability and accessibility of the general information backbone that connects them.”

Bringing it all Together

Chris Johnston’s assessment that there are big challenges ahead on a number of fronts shouldn’t be taken lightly. Before the merging of disparate technologies and sources of energy production and consumption some core refinements and modernization measures are needed.

Some groups are addressing such challenges, including a team of researchers out of the University of Pittsburgh’s Swanson School of Engineering. The group recently announced that they have embarked on a long-term mission to integrate more efficient power delivery systems into the expanding American power grid. As a release this week noted, “by employing the same simulation technology used to design and engineer electricity grids, the researchers will model an expanded power grid that delivers electricity from the power plant to our homes and businesses with less infrastructure and a more reliable and efficient flow of electricity.”

This attempt to reconstruct infrastructure would allow for better conservation and also will make it simpler to look to more renewable sources of energy that are generated in remote locations. As one of the lead researchers for the project, Gregory Reed, noted the issue with power delivery in the U.S. is related to consistency. He explains:

“Electricity in the United States is generated, transported and delivered by alternating current (AC). But modern devices—from renewable power resources and electric vehicles to high-definition televisions, data center, computers and other devices take a direct current (DC) input, hence the AC/DC converters.” In short, systems that were once adequate are now strained due to a lack of IT infrastructure to support added complexity.

Others are looking at the roles that smart meters can play within paradoxical issue of cloud computing data centers themselves. In other words, they are examining how data centers that provide the cloud power to create better efficiency can themselves become more central to overall local efficiency.

The cloud can provide a robust, scalable system to manage fluctuating demand and input/output of information as well as serve as a springboard for creative teams of developers. However, it’s a long road ahead. In the meantime, the urban migration continues to build, making the work to support energy efficiency via cloud computing (and other IT innovations) an urgent matter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This