Brain Computer Interfaces Benefit from Cloud Advancements

By Kate Ericson

March 23, 2011

What do you get when you mix compute clouds and electroencephalograms (EEG) together? Ask Kathleen Ericson a PhD candidate in the Department of Computer Science at Colorado State University, who in a paper coauthored with Professors Shrideep Pallickara and Charles Anderson has explored some of these possibilities [1]. This paper was awarded the Best Student Paper award at the IEEE Conference on Cloud Computing Technology & Science in December 2010.

Brain Computer Interfaces (BCIs) have been gaining traction in recent years. These applications range from allowing people who have lost voluntary motor control to type at a keyboard [2] and also to allow navigating a wheelchair through a crowded room [3]. These applications rely on EEG data gathered from electrodes held close to the scalp. Machine Learning techniques, such as artificial neural networks, can then be used to interpret the user’s intent from these signals. 

EEG analysis is usually performed in physical proximity to the user that, in turn, can lead to limitations in the processing power available for analyzing the EEG signals. For example, the wheelchair application relies on a laptop carried by the user for all EEG analysis. Professor Anderson has been researching EEG classification problems for several years.

In current BCI applications, there is a one-to-one relationship between the user and the machine.  This usually means that there is a single, very well trained neural network that has been fine-tuned to interacting with that individual. Training a neural network to the point where it can provide meaningful classifications can be time consuming. EEG classification has the additional difficulty that the signals may change over time due to user fatigue. Because of user fatigue, a fine-tuned neural network may need to undergo a period of retraining while in use. 

The CSU team considered an alternative to the approach of a single well-trained neural network: the group of experts approach. This approach involves training many smaller neural networks.  Each network is smaller and less well trained than a single neural network would need to be – meaning that the training process is much shorter. While none of these networks can individually learn enough to accurately classify all data, each learns something slightly different, and an accurate classification can be built upon their predictions as a group. But such an approach also means the need for more compute capabilities.

The decision to moving the EEG analysis to the cloud allowed the team to move away from the one-to-one relationship that is common between users and machines in BCI applications. This is also where the Granules [4, 5] cloud runtime (created by Prof. Pallickara, the author’s PhD advisor) comes in. Granules is uniquely suited to processing such EEG streams. Granules provisions a radically different computation model. Unlike traditional computations that have a run-once semantics, computations in Granules have a lifetime associated with it and can execute multiple times and retain state across multiple executions. This feature comes in particularly handy when you are processing EEG streams in real time.

Using Granules, instead of having a single neural network devoted to classifying EEG signals, one could use a whole cluster. The group of experts’ approach is a particularly good fit for the Map-Reduce paradigm that is supported in Granules. Each mapper is responsible for training and maintaining a neural network.  When a mapper has classified data, it sends its classification on to the reducer. The reducer waits for all mappers to weigh in, and then produces an expert opinion based on the predictions of all the mappers. While their current implementation simply returns the most predicted classification, it is possible to train another neural network on the reducer that can learn which mappers have the best predictions and add appropriate weights to incoming predictions.

While other cloud runtimes, such as Hadoop [6], demand run-once semantics, Granules allows computations to be activated as more data is available (such as new EEG streams being generated), and enter a dormant state between rounds of execution.  Granules is then able to store state between successive rounds of execution.  This allowed the CSU team to train neural networks on a set of resources within Granules, and then stream EEG signals to the cloud for classification.  In Hadoop, this would have required one to write the neural network to file between rounds of execution, and load it back into memory before classifying any data.  This would have precluded the possibility of classifying EEG signals in real time.

An additional benefit of using Granules is the ability to concurrently interleave several long-running computations simultaneously on a given machine.  This means that a single cluster of neural networks can support thousands of users simultaneously.  In their experiments, the team at CSU has supported EEG streams generated by 150 users on a cloud of 10 computers.  In these experiments the streams were generated from a pre-recorded dataset, and were sent in bursts every 250ms for every user.  This resulted in their system classifying EEG streams at the rate of 12MB/s, 1GB/83s, and 1TB in 23 hours. 

This cloud returned classification results in under 250ms (before the next set of data is sent) in 99.9% of the test cases.  With 150 users, 0.04% of the messages were over the 250ms threshold: one of every 2,500 messages (once every 10 minutes) the response to a 250ms packet was too slow. Using compression algorithms on the streams should allow handling even more concurrent users within such a cluster. The design does not preclude allowing the existence of multiple such clusters which would allow the system to scale-out even more.

Ultimately, this research has tremendous promise. By moving EEG analysis to the cloud, one can avoid the limitations many mobile BCI applications have.  Instead of having a single machine dedicated to a single user, one could have a cluster of hundreds of machines serving tens of thousands of users.  This approach has multiple benefits: First, by aggregating so much user data, one can have a much larger base to train the neural networks.  Secondly, one can leverage a group of experts approach – multiple smaller neural networks spread across a cloud can work together to produce an expert opinion.  Lastly, this also opens up possibilities for even more complex analysis with the Map-Reduce paradigm.  EEG streams can be analyzed not only over an immediate interval, but longer intervals of data (such as seconds or minutes) can be analyzed for trends. The Colorado State University team is exploring these research issues.

[1] K. Ericson, et al., “Analyzing Electroencephalograms Using Cloud Computing Techniques,” in IEEE  Conference on Cloud Computing Technology and Science, Indianopolis, USA, 2010.

[2] C. W. Anderson and J. A. Bratman, “Translating Thoughts into Actions by Finding Patterns in Brainwaves,” in Fourteenth Yale Workshop on Adaptive and Learning Systems, New Haven, CT, 2008, pp. 1-6.

[3] F. Galan, et al., “A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, pp. 2159-2169, 2008.

[4] S. Pallickara, et al., “Granules: A Lightweight, Streaming Runtime for Cloud Computing With Support for Map-Reduce,” in IEEE International Conference on Cluster Computing, New Orleans, LA., 2009.

[5] S. Pallickara, et al., “An Overview of the Granules Runtime for Cloud Computing,” in IEEE International Conference on e-Science, Indianapolis, 2008.
[6] T. White, Hadoop: The Definitive Guide, 1 ed.: O’Reilly Media, 2009.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire