Brain Computer Interfaces Benefit from Cloud Advancements

By Kate Ericson

March 23, 2011

What do you get when you mix compute clouds and electroencephalograms (EEG) together? Ask Kathleen Ericson a PhD candidate in the Department of Computer Science at Colorado State University, who in a paper coauthored with Professors Shrideep Pallickara and Charles Anderson has explored some of these possibilities [1]. This paper was awarded the Best Student Paper award at the IEEE Conference on Cloud Computing Technology & Science in December 2010.

Brain Computer Interfaces (BCIs) have been gaining traction in recent years. These applications range from allowing people who have lost voluntary motor control to type at a keyboard [2] and also to allow navigating a wheelchair through a crowded room [3]. These applications rely on EEG data gathered from electrodes held close to the scalp. Machine Learning techniques, such as artificial neural networks, can then be used to interpret the user’s intent from these signals. 

EEG analysis is usually performed in physical proximity to the user that, in turn, can lead to limitations in the processing power available for analyzing the EEG signals. For example, the wheelchair application relies on a laptop carried by the user for all EEG analysis. Professor Anderson has been researching EEG classification problems for several years.

In current BCI applications, there is a one-to-one relationship between the user and the machine.  This usually means that there is a single, very well trained neural network that has been fine-tuned to interacting with that individual. Training a neural network to the point where it can provide meaningful classifications can be time consuming. EEG classification has the additional difficulty that the signals may change over time due to user fatigue. Because of user fatigue, a fine-tuned neural network may need to undergo a period of retraining while in use. 

The CSU team considered an alternative to the approach of a single well-trained neural network: the group of experts approach. This approach involves training many smaller neural networks.  Each network is smaller and less well trained than a single neural network would need to be – meaning that the training process is much shorter. While none of these networks can individually learn enough to accurately classify all data, each learns something slightly different, and an accurate classification can be built upon their predictions as a group. But such an approach also means the need for more compute capabilities.

The decision to moving the EEG analysis to the cloud allowed the team to move away from the one-to-one relationship that is common between users and machines in BCI applications. This is also where the Granules [4, 5] cloud runtime (created by Prof. Pallickara, the author’s PhD advisor) comes in. Granules is uniquely suited to processing such EEG streams. Granules provisions a radically different computation model. Unlike traditional computations that have a run-once semantics, computations in Granules have a lifetime associated with it and can execute multiple times and retain state across multiple executions. This feature comes in particularly handy when you are processing EEG streams in real time.

Using Granules, instead of having a single neural network devoted to classifying EEG signals, one could use a whole cluster. The group of experts’ approach is a particularly good fit for the Map-Reduce paradigm that is supported in Granules. Each mapper is responsible for training and maintaining a neural network.  When a mapper has classified data, it sends its classification on to the reducer. The reducer waits for all mappers to weigh in, and then produces an expert opinion based on the predictions of all the mappers. While their current implementation simply returns the most predicted classification, it is possible to train another neural network on the reducer that can learn which mappers have the best predictions and add appropriate weights to incoming predictions.

While other cloud runtimes, such as Hadoop [6], demand run-once semantics, Granules allows computations to be activated as more data is available (such as new EEG streams being generated), and enter a dormant state between rounds of execution.  Granules is then able to store state between successive rounds of execution.  This allowed the CSU team to train neural networks on a set of resources within Granules, and then stream EEG signals to the cloud for classification.  In Hadoop, this would have required one to write the neural network to file between rounds of execution, and load it back into memory before classifying any data.  This would have precluded the possibility of classifying EEG signals in real time.

An additional benefit of using Granules is the ability to concurrently interleave several long-running computations simultaneously on a given machine.  This means that a single cluster of neural networks can support thousands of users simultaneously.  In their experiments, the team at CSU has supported EEG streams generated by 150 users on a cloud of 10 computers.  In these experiments the streams were generated from a pre-recorded dataset, and were sent in bursts every 250ms for every user.  This resulted in their system classifying EEG streams at the rate of 12MB/s, 1GB/83s, and 1TB in 23 hours. 

This cloud returned classification results in under 250ms (before the next set of data is sent) in 99.9% of the test cases.  With 150 users, 0.04% of the messages were over the 250ms threshold: one of every 2,500 messages (once every 10 minutes) the response to a 250ms packet was too slow. Using compression algorithms on the streams should allow handling even more concurrent users within such a cluster. The design does not preclude allowing the existence of multiple such clusters which would allow the system to scale-out even more.

Ultimately, this research has tremendous promise. By moving EEG analysis to the cloud, one can avoid the limitations many mobile BCI applications have.  Instead of having a single machine dedicated to a single user, one could have a cluster of hundreds of machines serving tens of thousands of users.  This approach has multiple benefits: First, by aggregating so much user data, one can have a much larger base to train the neural networks.  Secondly, one can leverage a group of experts approach – multiple smaller neural networks spread across a cloud can work together to produce an expert opinion.  Lastly, this also opens up possibilities for even more complex analysis with the Map-Reduce paradigm.  EEG streams can be analyzed not only over an immediate interval, but longer intervals of data (such as seconds or minutes) can be analyzed for trends. The Colorado State University team is exploring these research issues.

[1] K. Ericson, et al., “Analyzing Electroencephalograms Using Cloud Computing Techniques,” in IEEE  Conference on Cloud Computing Technology and Science, Indianopolis, USA, 2010.

[2] C. W. Anderson and J. A. Bratman, “Translating Thoughts into Actions by Finding Patterns in Brainwaves,” in Fourteenth Yale Workshop on Adaptive and Learning Systems, New Haven, CT, 2008, pp. 1-6.

[3] F. Galan, et al., “A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots,” Clinical Neurophysiology, vol. 119, pp. 2159-2169, 2008.

[4] S. Pallickara, et al., “Granules: A Lightweight, Streaming Runtime for Cloud Computing With Support for Map-Reduce,” in IEEE International Conference on Cluster Computing, New Orleans, LA., 2009.

[5] S. Pallickara, et al., “An Overview of the Granules Runtime for Cloud Computing,” in IEEE International Conference on e-Science, Indianapolis, 2008.
[6] T. White, Hadoop: The Definitive Guide, 1 ed.: O’Reilly Media, 2009.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire