Platform Tunes Symphony for Big Data Deluge

By Nicole Hemsoth

March 31, 2011

The “big data” topic is wending its way into an increasing number of conversations as data volumes mount, stretching computational resources to their limits. This realm of massive datasets is not confined to business intelligence either — it is increasingly becoming a central component of mission-critical enterprise goals.

Accordingly, the last year has produced a swell of news around companies looking to capitalize on the challenges of managing big data via commercial renditions of popular open source products and the emergence of new open frameworks to further develop the landscape. Newer companies like Cloudera, for instance, seek to bring “big data to the masses” via simplified handling of large messy datasets. And now, industry stalwart Platform Computing is hopping aboard the big data express.

modern architectureTo be more specific, Platform announced this week that it’s seeking to provide distributed computing for the MapReduce programming model, which is one of a short list of ways to extract and map the pesky unstructured data and, a la its moniker, reduce that mess into actionable information.

Cloudera (and a host of open source solutions) are all targeting one big problem. At the heart of challenges for those contending with big data (financial services organizations and large-scale business analytics users, among others) is the matter of structured versus unstructured data. To be clear, however, this isn’t just a single-sided issue; unstructured data can be problematic on several fronts, not the least of which is some warranted concern about being “locked in” to specific management tools for all that information.

Platform and others are right to address this and other problems given the continued proliferation of more of this particularly tricky type of data. As it stands, a vast majority of the data filtering in is in an unstructured format — as much as 80 percent if IDC figures are correct. New programming frameworks have stepped into the fray to help manage this complexity and enable distributed computing on large datasets.

On the storage end, new techniques and file systems like the Hadoop file system (HDFS), which was built to tackle the demands of both structured and unstructured data, have been developed, but in Platform’s view (which we’ll expound on in a moment) this and other models all have some serious weaknesses on one front or another.

An Evolving Platform

For a company that has been in the business of distributed systems for 18 years, this implementation isn’t unexpected. In fact, the only element that does cause some head-scratching is why they took so long to get into the big data boat when much of the needed framework was there.

According to Scott Campbell, Platform’s product manager for enterprise analytics, the process to start adding the tools to “reduce the maps” began around eight months ago even though he noted that the company was seeing some seismic shifts in the analytics sphere over the last few years on the unstructured data front. With massive amounts of data filtering in from any number of new tools, sensors and other collection methods, it was clear that it was becoming impossible to run this data into warehouses or structured databases and there were some serious limitations underlying a number of existing efforts.

Ken Hertzler, vice president of product management for Platform, told us that their customers, especially those on the financial services and analytics side, found that existing big data solutions (including open source tools like Hadoop, companies like Cloudera or data warehousing systems a la Greenplum or Aster Data) had critical flaws. He pointed out that with all of these solutions users might be responsible for managing the software stack (if using open source) and would thus need to increase internal expertise as well as perform regular maintenance to keep big data projects churning.

Another big problem that Hertzler highlighted is that open source solutions are reliant only with the HDFS file system and those who try to avoid this perceived “trap” and go with a data warehousing alternative are getting that top-to-bottom product that can be very difficult to extract oneself from.

This isn’t just coming from Hertzler’s own opinion well; he stated that customers all felt that the alternatives for big data management did a great job of managing the query side of their needs but that they failed on the enterprise-class or production-ready level. He revealed that the main gripes were about poor application compatibility, the lock-in issue, maintaining utilization and SLAs and concerns about having data on multiple cloud storage distributed systems.

Platform’s distributed MapReduce workload manager and job execution engine is, as both Hertzler and Campbell emphasized repeatedly, enterprise-ready and far more viable due to two key traits in particular: openness and scalability.

The keywords “open” and “scalable” are ferried about in nearly every technological context these days — almost to the point that their meanings are sometimes overlooked. Campbell explained in depth these two angles to highlight how Platform is doing something that isn’t available with the other management alternatives.

The openness and scalability angles are somewhat interesting but require a bit of setting up, more specifically by putting Platform’s announcement in the context of its Symphony product.

This MapReduce capability has been integrated into Platform Symphony, which is something of an SOA approach to workload distribution, in contrast to the company’s other widely-used LSF product, which works from a batch-oriented architecture. Why is this important, you ask…

Well, to take yet another step backwards, the Symphony approach for workload distribution and management is actually a natural fit for what Platform just got around to eight months ago. Symphony was literally built for distributed architectures, which is exactly how MapReduce is deployed. The short time-to-market for this (relatively — after all, what’s eight months) is because Campbell and his team simply build the APIs on top of Symphony. With their existing tool in place to provide the distributed management and job execution engine, they pile on specific APIs for different job types (PIG, Hadoop, etc.). Users can manage complexity by using the Symphony framework along with those APIs, and on the backside, using connectors to file systems or databases to serve as I/O for MapReduce jobs.

And back to the relatively short process behind this — the company is more or less aggregating interfaces versus tackling the cumbersome mission of rewriting MapReduce like some of the commercial big data companies have done.

In other words, the Symphony was already playing along with the big MapReduce quest to simplify workloads by allowing users to run multiple jobs at a time versus having one job hang out until completion. This could possibly mean a much more nimble big data game for those who — here’s the catch — are under the Symphony license. While the company hasn’t “productized” the new solution yet, it is going to be available within Symphony and is already making its way into financial services organizations.

Campbell asserted that this “rearchitecture of a workload distribution has low latency and operates more like a server than a grid so the workloads that can run on Symphony can run on sub-second time.”

Back to Openness and Scalability…

Remember several paragraphs ago when we hit on the idea that this offering might be something of a game-changer (at least for those with a Symphony license) due to the openness and scalability aspects? Now that there’s sufficient background we can explore that in quick detail. This is where the meat of the announcement is.

The “open” angle is probably the most important differentiator here between the Symphony/MapReduce marriage and other alternatives. As Campbell noted, since this capability “sits in the middle of the stack so that we can open up the architecture on both the front-end application layer and the backend database layer. This means we can let customers move from a complete solution and single vendor or select the application or file systems independently.”

Campbell went on to state that “this technology is getting a lot of investment commercially and in the open source form because it’s compatible with Hadoop and fully supports APIs for MapReduce. Right now, everything is almost always coming from a single vendor top to bottom and when open source comes you can’t take advantage of it. As new file systems get created you can leverage and manage those versus being locked in.”

It is also possible to add APIs specifically for MapReduce logic so there is integration of Hadoop, PIG, HIVE and others, as more programming frameworks are likely to emerge over the next several months. Platform’s big story here on the openness front is that when something new comes down the pike, users will actually be able to put it into production versus facing lock-in with very high barriers to moving over.

On that note, the architecture is designed, as noted before, without the requirement for using HDFS as the end-all file system. Users will be able to select file systems based on their specific needs while still maintaining their application type, which might, for example be written in Hadoop.

In terms of scalability, Campbell affirmed that they will be able to manage thousands or even millions of files varying in size in a short period of time via the proven, existing Symphony product.

On this note, users could get higher resource utilization since they’re getting more than one distributed job at a time — they can have multiple running simultaneously which is unique for MapReduce. This is an important element for HPC folk who are performance conscious because, as Campbell explained, they’ve “eliminated a big issue in terms of startup time on the mappers so single jobs can be fast but overall time also goes way down because it’s not a serial thing any longer; we are running many jobs in parallel across a set of jobs.”

When asked about how this Symphony and MapReduce marriage will meld into the HPC user camp, Campbell noted traction in the government and life sciences spheres as well as the more predictable arenas like financial services and large-scale analytics.

He said that while this could represent an improvement for users, there was no core engineering behind the effort, it’s been a matter of engineering interfaces to support the MapReduce logic. “We can react to the market,” he declared. “If someone creates another end user application for MapReduce we can simply interface to it.”

As big data gets bigger and more companies come calling for management and data crunching, there’s little doubt Platform’s interface builders will be working overtime.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This