Platform Tunes Symphony for Big Data Deluge

By Nicole Hemsoth

March 31, 2011

The “big data” topic is wending its way into an increasing number of conversations as data volumes mount, stretching computational resources to their limits. This realm of massive datasets is not confined to business intelligence either — it is increasingly becoming a central component of mission-critical enterprise goals.

Accordingly, the last year has produced a swell of news around companies looking to capitalize on the challenges of managing big data via commercial renditions of popular open source products and the emergence of new open frameworks to further develop the landscape. Newer companies like Cloudera, for instance, seek to bring “big data to the masses” via simplified handling of large messy datasets. And now, industry stalwart Platform Computing is hopping aboard the big data express.

modern architectureTo be more specific, Platform announced this week that it’s seeking to provide distributed computing for the MapReduce programming model, which is one of a short list of ways to extract and map the pesky unstructured data and, a la its moniker, reduce that mess into actionable information.

Cloudera (and a host of open source solutions) are all targeting one big problem. At the heart of challenges for those contending with big data (financial services organizations and large-scale business analytics users, among others) is the matter of structured versus unstructured data. To be clear, however, this isn’t just a single-sided issue; unstructured data can be problematic on several fronts, not the least of which is some warranted concern about being “locked in” to specific management tools for all that information.

Platform and others are right to address this and other problems given the continued proliferation of more of this particularly tricky type of data. As it stands, a vast majority of the data filtering in is in an unstructured format — as much as 80 percent if IDC figures are correct. New programming frameworks have stepped into the fray to help manage this complexity and enable distributed computing on large datasets.

On the storage end, new techniques and file systems like the Hadoop file system (HDFS), which was built to tackle the demands of both structured and unstructured data, have been developed, but in Platform’s view (which we’ll expound on in a moment) this and other models all have some serious weaknesses on one front or another.

An Evolving Platform

For a company that has been in the business of distributed systems for 18 years, this implementation isn’t unexpected. In fact, the only element that does cause some head-scratching is why they took so long to get into the big data boat when much of the needed framework was there.

According to Scott Campbell, Platform’s product manager for enterprise analytics, the process to start adding the tools to “reduce the maps” began around eight months ago even though he noted that the company was seeing some seismic shifts in the analytics sphere over the last few years on the unstructured data front. With massive amounts of data filtering in from any number of new tools, sensors and other collection methods, it was clear that it was becoming impossible to run this data into warehouses or structured databases and there were some serious limitations underlying a number of existing efforts.

Ken Hertzler, vice president of product management for Platform, told us that their customers, especially those on the financial services and analytics side, found that existing big data solutions (including open source tools like Hadoop, companies like Cloudera or data warehousing systems a la Greenplum or Aster Data) had critical flaws. He pointed out that with all of these solutions users might be responsible for managing the software stack (if using open source) and would thus need to increase internal expertise as well as perform regular maintenance to keep big data projects churning.

Another big problem that Hertzler highlighted is that open source solutions are reliant only with the HDFS file system and those who try to avoid this perceived “trap” and go with a data warehousing alternative are getting that top-to-bottom product that can be very difficult to extract oneself from.

This isn’t just coming from Hertzler’s own opinion well; he stated that customers all felt that the alternatives for big data management did a great job of managing the query side of their needs but that they failed on the enterprise-class or production-ready level. He revealed that the main gripes were about poor application compatibility, the lock-in issue, maintaining utilization and SLAs and concerns about having data on multiple cloud storage distributed systems.

Platform’s distributed MapReduce workload manager and job execution engine is, as both Hertzler and Campbell emphasized repeatedly, enterprise-ready and far more viable due to two key traits in particular: openness and scalability.

The keywords “open” and “scalable” are ferried about in nearly every technological context these days — almost to the point that their meanings are sometimes overlooked. Campbell explained in depth these two angles to highlight how Platform is doing something that isn’t available with the other management alternatives.

The openness and scalability angles are somewhat interesting but require a bit of setting up, more specifically by putting Platform’s announcement in the context of its Symphony product.

This MapReduce capability has been integrated into Platform Symphony, which is something of an SOA approach to workload distribution, in contrast to the company’s other widely-used LSF product, which works from a batch-oriented architecture. Why is this important, you ask…

Well, to take yet another step backwards, the Symphony approach for workload distribution and management is actually a natural fit for what Platform just got around to eight months ago. Symphony was literally built for distributed architectures, which is exactly how MapReduce is deployed. The short time-to-market for this (relatively — after all, what’s eight months) is because Campbell and his team simply build the APIs on top of Symphony. With their existing tool in place to provide the distributed management and job execution engine, they pile on specific APIs for different job types (PIG, Hadoop, etc.). Users can manage complexity by using the Symphony framework along with those APIs, and on the backside, using connectors to file systems or databases to serve as I/O for MapReduce jobs.

And back to the relatively short process behind this — the company is more or less aggregating interfaces versus tackling the cumbersome mission of rewriting MapReduce like some of the commercial big data companies have done.

In other words, the Symphony was already playing along with the big MapReduce quest to simplify workloads by allowing users to run multiple jobs at a time versus having one job hang out until completion. This could possibly mean a much more nimble big data game for those who — here’s the catch — are under the Symphony license. While the company hasn’t “productized” the new solution yet, it is going to be available within Symphony and is already making its way into financial services organizations.

Campbell asserted that this “rearchitecture of a workload distribution has low latency and operates more like a server than a grid so the workloads that can run on Symphony can run on sub-second time.”

Back to Openness and Scalability…

Remember several paragraphs ago when we hit on the idea that this offering might be something of a game-changer (at least for those with a Symphony license) due to the openness and scalability aspects? Now that there’s sufficient background we can explore that in quick detail. This is where the meat of the announcement is.

The “open” angle is probably the most important differentiator here between the Symphony/MapReduce marriage and other alternatives. As Campbell noted, since this capability “sits in the middle of the stack so that we can open up the architecture on both the front-end application layer and the backend database layer. This means we can let customers move from a complete solution and single vendor or select the application or file systems independently.”

Campbell went on to state that “this technology is getting a lot of investment commercially and in the open source form because it’s compatible with Hadoop and fully supports APIs for MapReduce. Right now, everything is almost always coming from a single vendor top to bottom and when open source comes you can’t take advantage of it. As new file systems get created you can leverage and manage those versus being locked in.”

It is also possible to add APIs specifically for MapReduce logic so there is integration of Hadoop, PIG, HIVE and others, as more programming frameworks are likely to emerge over the next several months. Platform’s big story here on the openness front is that when something new comes down the pike, users will actually be able to put it into production versus facing lock-in with very high barriers to moving over.

On that note, the architecture is designed, as noted before, without the requirement for using HDFS as the end-all file system. Users will be able to select file systems based on their specific needs while still maintaining their application type, which might, for example be written in Hadoop.

In terms of scalability, Campbell affirmed that they will be able to manage thousands or even millions of files varying in size in a short period of time via the proven, existing Symphony product.

On this note, users could get higher resource utilization since they’re getting more than one distributed job at a time — they can have multiple running simultaneously which is unique for MapReduce. This is an important element for HPC folk who are performance conscious because, as Campbell explained, they’ve “eliminated a big issue in terms of startup time on the mappers so single jobs can be fast but overall time also goes way down because it’s not a serial thing any longer; we are running many jobs in parallel across a set of jobs.”

When asked about how this Symphony and MapReduce marriage will meld into the HPC user camp, Campbell noted traction in the government and life sciences spheres as well as the more predictable arenas like financial services and large-scale analytics.

He said that while this could represent an improvement for users, there was no core engineering behind the effort, it’s been a matter of engineering interfaces to support the MapReduce logic. “We can react to the market,” he declared. “If someone creates another end user application for MapReduce we can simply interface to it.”

As big data gets bigger and more companies come calling for management and data crunching, there’s little doubt Platform’s interface builders will be working overtime.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a pres Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have coalesced into a major headache in advanced HPC system desig Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field an Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This