Platform Tunes Symphony for Big Data Deluge

By Nicole Hemsoth

March 31, 2011

The “big data” topic is wending its way into an increasing number of conversations as data volumes mount, stretching computational resources to their limits. This realm of massive datasets is not confined to business intelligence either — it is increasingly becoming a central component of mission-critical enterprise goals.

Accordingly, the last year has produced a swell of news around companies looking to capitalize on the challenges of managing big data via commercial renditions of popular open source products and the emergence of new open frameworks to further develop the landscape. Newer companies like Cloudera, for instance, seek to bring “big data to the masses” via simplified handling of large messy datasets. And now, industry stalwart Platform Computing is hopping aboard the big data express.

modern architectureTo be more specific, Platform announced this week that it’s seeking to provide distributed computing for the MapReduce programming model, which is one of a short list of ways to extract and map the pesky unstructured data and, a la its moniker, reduce that mess into actionable information.

Cloudera (and a host of open source solutions) are all targeting one big problem. At the heart of challenges for those contending with big data (financial services organizations and large-scale business analytics users, among others) is the matter of structured versus unstructured data. To be clear, however, this isn’t just a single-sided issue; unstructured data can be problematic on several fronts, not the least of which is some warranted concern about being “locked in” to specific management tools for all that information.

Platform and others are right to address this and other problems given the continued proliferation of more of this particularly tricky type of data. As it stands, a vast majority of the data filtering in is in an unstructured format — as much as 80 percent if IDC figures are correct. New programming frameworks have stepped into the fray to help manage this complexity and enable distributed computing on large datasets.

On the storage end, new techniques and file systems like the Hadoop file system (HDFS), which was built to tackle the demands of both structured and unstructured data, have been developed, but in Platform’s view (which we’ll expound on in a moment) this and other models all have some serious weaknesses on one front or another.

An Evolving Platform

For a company that has been in the business of distributed systems for 18 years, this implementation isn’t unexpected. In fact, the only element that does cause some head-scratching is why they took so long to get into the big data boat when much of the needed framework was there.

According to Scott Campbell, Platform’s product manager for enterprise analytics, the process to start adding the tools to “reduce the maps” began around eight months ago even though he noted that the company was seeing some seismic shifts in the analytics sphere over the last few years on the unstructured data front. With massive amounts of data filtering in from any number of new tools, sensors and other collection methods, it was clear that it was becoming impossible to run this data into warehouses or structured databases and there were some serious limitations underlying a number of existing efforts.

Ken Hertzler, vice president of product management for Platform, told us that their customers, especially those on the financial services and analytics side, found that existing big data solutions (including open source tools like Hadoop, companies like Cloudera or data warehousing systems a la Greenplum or Aster Data) had critical flaws. He pointed out that with all of these solutions users might be responsible for managing the software stack (if using open source) and would thus need to increase internal expertise as well as perform regular maintenance to keep big data projects churning.

Another big problem that Hertzler highlighted is that open source solutions are reliant only with the HDFS file system and those who try to avoid this perceived “trap” and go with a data warehousing alternative are getting that top-to-bottom product that can be very difficult to extract oneself from.

This isn’t just coming from Hertzler’s own opinion well; he stated that customers all felt that the alternatives for big data management did a great job of managing the query side of their needs but that they failed on the enterprise-class or production-ready level. He revealed that the main gripes were about poor application compatibility, the lock-in issue, maintaining utilization and SLAs and concerns about having data on multiple cloud storage distributed systems.

Platform’s distributed MapReduce workload manager and job execution engine is, as both Hertzler and Campbell emphasized repeatedly, enterprise-ready and far more viable due to two key traits in particular: openness and scalability.

The keywords “open” and “scalable” are ferried about in nearly every technological context these days — almost to the point that their meanings are sometimes overlooked. Campbell explained in depth these two angles to highlight how Platform is doing something that isn’t available with the other management alternatives.

The openness and scalability angles are somewhat interesting but require a bit of setting up, more specifically by putting Platform’s announcement in the context of its Symphony product.

This MapReduce capability has been integrated into Platform Symphony, which is something of an SOA approach to workload distribution, in contrast to the company’s other widely-used LSF product, which works from a batch-oriented architecture. Why is this important, you ask…

Well, to take yet another step backwards, the Symphony approach for workload distribution and management is actually a natural fit for what Platform just got around to eight months ago. Symphony was literally built for distributed architectures, which is exactly how MapReduce is deployed. The short time-to-market for this (relatively — after all, what’s eight months) is because Campbell and his team simply build the APIs on top of Symphony. With their existing tool in place to provide the distributed management and job execution engine, they pile on specific APIs for different job types (PIG, Hadoop, etc.). Users can manage complexity by using the Symphony framework along with those APIs, and on the backside, using connectors to file systems or databases to serve as I/O for MapReduce jobs.

And back to the relatively short process behind this — the company is more or less aggregating interfaces versus tackling the cumbersome mission of rewriting MapReduce like some of the commercial big data companies have done.

In other words, the Symphony was already playing along with the big MapReduce quest to simplify workloads by allowing users to run multiple jobs at a time versus having one job hang out until completion. This could possibly mean a much more nimble big data game for those who — here’s the catch — are under the Symphony license. While the company hasn’t “productized” the new solution yet, it is going to be available within Symphony and is already making its way into financial services organizations.

Campbell asserted that this “rearchitecture of a workload distribution has low latency and operates more like a server than a grid so the workloads that can run on Symphony can run on sub-second time.”

Back to Openness and Scalability…

Remember several paragraphs ago when we hit on the idea that this offering might be something of a game-changer (at least for those with a Symphony license) due to the openness and scalability aspects? Now that there’s sufficient background we can explore that in quick detail. This is where the meat of the announcement is.

The “open” angle is probably the most important differentiator here between the Symphony/MapReduce marriage and other alternatives. As Campbell noted, since this capability “sits in the middle of the stack so that we can open up the architecture on both the front-end application layer and the backend database layer. This means we can let customers move from a complete solution and single vendor or select the application or file systems independently.”

Campbell went on to state that “this technology is getting a lot of investment commercially and in the open source form because it’s compatible with Hadoop and fully supports APIs for MapReduce. Right now, everything is almost always coming from a single vendor top to bottom and when open source comes you can’t take advantage of it. As new file systems get created you can leverage and manage those versus being locked in.”

It is also possible to add APIs specifically for MapReduce logic so there is integration of Hadoop, PIG, HIVE and others, as more programming frameworks are likely to emerge over the next several months. Platform’s big story here on the openness front is that when something new comes down the pike, users will actually be able to put it into production versus facing lock-in with very high barriers to moving over.

On that note, the architecture is designed, as noted before, without the requirement for using HDFS as the end-all file system. Users will be able to select file systems based on their specific needs while still maintaining their application type, which might, for example be written in Hadoop.

In terms of scalability, Campbell affirmed that they will be able to manage thousands or even millions of files varying in size in a short period of time via the proven, existing Symphony product.

On this note, users could get higher resource utilization since they’re getting more than one distributed job at a time — they can have multiple running simultaneously which is unique for MapReduce. This is an important element for HPC folk who are performance conscious because, as Campbell explained, they’ve “eliminated a big issue in terms of startup time on the mappers so single jobs can be fast but overall time also goes way down because it’s not a serial thing any longer; we are running many jobs in parallel across a set of jobs.”

When asked about how this Symphony and MapReduce marriage will meld into the HPC user camp, Campbell noted traction in the government and life sciences spheres as well as the more predictable arenas like financial services and large-scale analytics.

He said that while this could represent an improvement for users, there was no core engineering behind the effort, it’s been a matter of engineering interfaces to support the MapReduce logic. “We can react to the market,” he declared. “If someone creates another end user application for MapReduce we can simply interface to it.”

As big data gets bigger and more companies come calling for management and data crunching, there’s little doubt Platform’s interface builders will be working overtime.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This