Preoccupied with Exascale

By Michael Feldman

March 31, 2011

Every HPC event you attend this year will almost certainly devote much attention to the drive toward exascale. The HPCC conference in Newport, Rhode Island, this week was no exception. Besides the topic of the “missing middle,” which I covered in my previous post, exascale computing was probably the biggest single focus at HPCC this year. That makes sense, given that the supercomputer crowd is always leaning forward, and exascale is obviously the next big milestone.

Or is it? After hearing so much about exascale over the last couple of years, I’m starting to wonder about the rationale of devoting so much effort to what is essentially an arbitrary milestone based on the nomenclature of our decimal numbering system. Why not think about the challenges of 100-petaflop, or even 10-petaflop systems?

For that matter, why not devote more resources to figure out how to make today’s single-petaflop and multi-teraflop systems fundamentally better? Currently, there are only a handful of applications that can use a petaflop of computing. And only a small number of sites can even install a petaflop machine, given their cost (100-plus million dollars) and energy expense (several million dollars per year). In 10 years, exaflop machines will be equally rare and underutilized.

Getting applications to use cutting-edge supercomputers to the fullest extent has always been particularly difficult. Our track record of preparing software — application-level or system-level — for systems 10 years into the future is rather poor. I’m not sure what more we can expect, though. The hardware characteristics of systems not yet born are, by definition, difficult to anticipate.

To mitigate that problem, the HPC digerati are turning to “co-design” (i.e., developing hardware in conjunction with software) for exascale designs. It sounds like a wonderful idea, but I’d be hard-pressed to think of success stories using this approach. There is a reason hardware comes first: it’s the basic foundation upon which the higher abstractions of software are created. To some extent, co-design seems like trying to teach the baby while it’s still in the womb.

At HPCC, four of the 18 sessions focused almost exclusively on exascale, and many of the others at least touched on the topic. The one that particularly caught my attention, though, was the UHPC panel that discussed the work under development for DARPA’s Ubiquitous High Performance Computing program. The panel had the principals of each of the four UHPC projects (Angstrom, Runnemede, X-Caliber, and Echelon) talk about their respective approaches and provide an update on their work.

The scope of this article doesn’t allow me to elaborate on the specifics of each UHPC effort here (but watch this space for additional coverage in the future). In this context, my main interest is pointing out that UHPC is — as panel moderator Thomas Sterling pointed out — not an exascale program, per se. The DARPA RFP that defined this effort focused on “extreme computing” and developing power-efficient hardware, software stacks, operating systems, and programming environments that can scale down as well as up.

One of the goals of UHPC is to produce an architecture that delivers one petaflop in cabinet, with a max power draw of 57 KW. It is these cabinet-sized system that are likely to be widespread in the US DoD (and elsewhere) by the end of the decade. By contrast, exascale systems will be rare and initially serve as special-purpose machines, much as the petascale systems of today are.

Building better software and hardware for today’s level of supercomputing is a laudable goal. There’s plenty of backfilling to do in this regard, and that’s why I think the journey to exascale will be more important than its destination.

That’s the good news. The bad news is that there is concern that UHPC funding may be axed. At HPCC, rumors were floating about that money to support this effort will not be forthcoming. This was brought up at the panel session, and although all the participants seemed aware of the funding uncertainties, no one knew how this might play out.

In fact, the US government’s budgetary angst was a topic of discussion throughout the HPCC conference, and there was plenty of pessimism to go around. The general consensus was that given the political climate, government-funded HPC might be on the brink of its own recession. The InterSect360 forecast delivered at the conference predicted government HPC would grow modestly this year, but that forecast could turn south quickly if federal and local budgets start slicing off science and technology programs.

Today’s political climate will be especially problematic for exascale work. The community has never done a great job of explaining the societal payback for high performance computing that would generate urgency for those in the government. It’s difficult enough to distill the value of HPC into sound bites, but because exascale HPC is especially hard to explain to non-science types, that work will be particularly hard to sell. The multi-year time frame for exascale is another big disadvantage, given the rather short-term outlook of most politicians in this time of tight money.

With that in mind, HPC may indeed be entering a period of limited public support. If so, the community may have to refocus its priorities, as unpalatable as that seems. Exascale will inevitably happen. Moore’s Law, heterogenous architectures and optical interconnects will see to that. But we may end up drifting into exascale rather than driving it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This