With Windows Support, SGI Casts Altix UV in New Light

By Michael Feldman

April 3, 2011

SGI has been getting a lot of mileage out of its SGI UV shared memory platform, having delivered close to 500 systems since it started shipping them in June 2010. Now, with the recent addition of support for Microsoft’s Windows Server, the company is looking to expand its customer base in a big way.

Altix UV, SGI’s latest generation shared-memory supercomputer, was introduced at the Supercomputing Conference in November 2009. It uses SGI’s fifth generation NUMAlink interconnect technology and Intel “Nehalem” Xeon processors to construct HPC-class SMP server nodes. The interconnect, along with the special UV hub chip, glue all the processors and memory together so that they can be operated as a monolithic resource. A fully tricked-out Altix UV 1000 will have 2,048 cores (4,096 threads via HyperThreading) and 16 TB of globally shared memory. A maximally configured machine represents 18.5 teraflops of peak performance.

Being able to command all that power within a single system image has a number of advantages, the main one being you can run standard (non-MPI) applications on a machine that for all intents and purposes behaves as an enormous PC with gobs of cores and memory at its disposal. And, by definition, such a system doesn’t require the complex set-up, software licensing, and maintenance of a distributed cluster platform — not an easy task as you approach the 1000-core realm.

Up until a few weeks ago, Altix UV came only with Linux, either Novell’s SUSE or Red Hat’s enterprise version. In early March, support was added for Microsoft Windows Server 2008 R2. The first iteration supported up to 128 cores and 1 TB of memory. On March 25, the company announced Windows Server was certified to the OS’s maximum reach: 256 cores and 2 TB of memory.

IBM and HP also have large shared memory x86-based servers with Windows Server support. But IBM’s X3950 and HP’s Proliant DL980 G7 top out at 96 and 64, respectively — well below the Windows Server limits. “Our engineering work finally brings Windows into true scalability,” says SGI CEO Mark Barrenechea.

On the other hand, Itanium-based platforms on Windows can scale to 128 cores. But with the new UV-Windows set-up, those customers (principally HP Integrity users) can now migrate their codes to SGI UV gear and achieve even greater scalability, at least on the core-count side. Itaniums still prevail in memory reach, being able to access up 128 TB.

Barrenechea says they’re targeting two major application areas with this system, the first being SGI’s traditional technical computing market. The top five application suites they expect will take advantage of the Windows-UV combo are ANSYS FLUENT, MATLAB, Mathematica, LS-Dyna, and Accelerys. These run the gamut from CFD and FEA, to computational chemistry and computational biology.

The idea here is to allow scientists to take their PC-based codes and easily slide them into these big memory UV machines with little if any porting work. In some cases, they won’t even need to perform a recompilation. A PC binary should be able to run unaltered on the Xeon-based machine (although maybe not optimally), and if the code was written correctly, will automagically take advantage of the larger memory. Of course, to utilize additional UV cores, the developer will have to parallelize the code via OpenMP threading or the equivalent.

But many of these applications are constrained only by available memory, (requiring just one to four threads to do their job). Since a typical PC isn’t going to have more than a few gigabytes of RAM, the data sizes are going to be rather limited when it comes a traditional HPC simulation code. Even a relatively modest-sized four-dimensional array of 1000 x 1000 x 1000 x 1000 byte-sized elements (for say a 3D object moving through time) will occupy an entire terabyte.

At the recent HPCC conference in Newport, Rhode Island, SGI CTO Dr. Eng Lim Goh demonstrated a simulation of the human heart developed at the University of Montreal. On a laptop, because of the limited memory, it could only be run with 60 million grid points. That delivered a rather poor resolution of the heart in action. Moving it to an Altix UV machine with 1.2 TB of memory, the model was expanded to 2 billion grid points, providing a much more realistic model.

At that scale, the simulation still took two weeks to compute a single heartbeat. Goh suggested that parallelizing the code to take advantage of the additional UV cores (768 in this case) might be able speed up the model to something close to real-time.

But big memory is not just for technical workloads. The second major application area for a Windows-capable Altix UV is on the enterprise side, in the realm of data-intensive applications. In particular, we’re talking about data warehousing, data mining, business intelligence and related types of tools. The driver behind these applications is Microsoft’s SQL Server, whose support was added in conjunction with the Windows Server OS.

This area represents a new market for SGI, although some of these customers have HPC leanings as well. In general, though, any informatics-type application that encapsulates terascale-sized structured databases is fair game for an Altix UV. The fact that many of these codes are developed in and for a Microsoft environment means there is now an easier path to greater scalability.

Barrenechea considers SGI’s entry into Microsoft’s software ecosystem a significant step for them. “Sure, we’ve supported Windows and certified it,” he says, ‘but it’s a new focus for the company.”

Of course, Linux will be the operating system of choice for most HPC users. And, in fact, Altix UV scalability is still better on that OS. Red Hat Enterprise Linux 6 reaches to 8 TB of memory, while SUSE Linux Enterprise Server 11 hits the full 16 TB. Conveniently, Linux also supports all 2,048 cores of a top-end UV, although it’s hard to imagine an SMP-based code scaled to that level.

It should be noted that the memory limit on the Altix UV is actually constrained by the current generation of Xeon chips, whose 44-bit addressing scheme maxes out at 16 TB. If your data outgrows that capacity, Intel’s next-generation “Sandy Bridge” Xeons will add a couple more bits to quadruple its memory reach to 64 TB. According to SGI’s Goh, the company plans to support the new chips in an upcoming version of the Altix UV, and already have one order for such a system.

Core counts on the next-generation Altix UV may rise as well, although the most acute demand will remain on the memory capacity side. In any case, one or more of the supported OS’s will likely be tweaked to support any new limits SGI comes up with in future UV hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This