With Windows Support, SGI Casts Altix UV in New Light

By Michael Feldman

April 3, 2011

SGI has been getting a lot of mileage out of its SGI UV shared memory platform, having delivered close to 500 systems since it started shipping them in June 2010. Now, with the recent addition of support for Microsoft’s Windows Server, the company is looking to expand its customer base in a big way.

Altix UV, SGI’s latest generation shared-memory supercomputer, was introduced at the Supercomputing Conference in November 2009. It uses SGI’s fifth generation NUMAlink interconnect technology and Intel “Nehalem” Xeon processors to construct HPC-class SMP server nodes. The interconnect, along with the special UV hub chip, glue all the processors and memory together so that they can be operated as a monolithic resource. A fully tricked-out Altix UV 1000 will have 2,048 cores (4,096 threads via HyperThreading) and 16 TB of globally shared memory. A maximally configured machine represents 18.5 teraflops of peak performance.

Being able to command all that power within a single system image has a number of advantages, the main one being you can run standard (non-MPI) applications on a machine that for all intents and purposes behaves as an enormous PC with gobs of cores and memory at its disposal. And, by definition, such a system doesn’t require the complex set-up, software licensing, and maintenance of a distributed cluster platform — not an easy task as you approach the 1000-core realm.

Up until a few weeks ago, Altix UV came only with Linux, either Novell’s SUSE or Red Hat’s enterprise version. In early March, support was added for Microsoft Windows Server 2008 R2. The first iteration supported up to 128 cores and 1 TB of memory. On March 25, the company announced Windows Server was certified to the OS’s maximum reach: 256 cores and 2 TB of memory.

IBM and HP also have large shared memory x86-based servers with Windows Server support. But IBM’s X3950 and HP’s Proliant DL980 G7 top out at 96 and 64, respectively — well below the Windows Server limits. “Our engineering work finally brings Windows into true scalability,” says SGI CEO Mark Barrenechea.

On the other hand, Itanium-based platforms on Windows can scale to 128 cores. But with the new UV-Windows set-up, those customers (principally HP Integrity users) can now migrate their codes to SGI UV gear and achieve even greater scalability, at least on the core-count side. Itaniums still prevail in memory reach, being able to access up 128 TB.

Barrenechea says they’re targeting two major application areas with this system, the first being SGI’s traditional technical computing market. The top five application suites they expect will take advantage of the Windows-UV combo are ANSYS FLUENT, MATLAB, Mathematica, LS-Dyna, and Accelerys. These run the gamut from CFD and FEA, to computational chemistry and computational biology.

The idea here is to allow scientists to take their PC-based codes and easily slide them into these big memory UV machines with little if any porting work. In some cases, they won’t even need to perform a recompilation. A PC binary should be able to run unaltered on the Xeon-based machine (although maybe not optimally), and if the code was written correctly, will automagically take advantage of the larger memory. Of course, to utilize additional UV cores, the developer will have to parallelize the code via OpenMP threading or the equivalent.

But many of these applications are constrained only by available memory, (requiring just one to four threads to do their job). Since a typical PC isn’t going to have more than a few gigabytes of RAM, the data sizes are going to be rather limited when it comes a traditional HPC simulation code. Even a relatively modest-sized four-dimensional array of 1000 x 1000 x 1000 x 1000 byte-sized elements (for say a 3D object moving through time) will occupy an entire terabyte.

At the recent HPCC conference in Newport, Rhode Island, SGI CTO Dr. Eng Lim Goh demonstrated a simulation of the human heart developed at the University of Montreal. On a laptop, because of the limited memory, it could only be run with 60 million grid points. That delivered a rather poor resolution of the heart in action. Moving it to an Altix UV machine with 1.2 TB of memory, the model was expanded to 2 billion grid points, providing a much more realistic model.

At that scale, the simulation still took two weeks to compute a single heartbeat. Goh suggested that parallelizing the code to take advantage of the additional UV cores (768 in this case) might be able speed up the model to something close to real-time.

But big memory is not just for technical workloads. The second major application area for a Windows-capable Altix UV is on the enterprise side, in the realm of data-intensive applications. In particular, we’re talking about data warehousing, data mining, business intelligence and related types of tools. The driver behind these applications is Microsoft’s SQL Server, whose support was added in conjunction with the Windows Server OS.

This area represents a new market for SGI, although some of these customers have HPC leanings as well. In general, though, any informatics-type application that encapsulates terascale-sized structured databases is fair game for an Altix UV. The fact that many of these codes are developed in and for a Microsoft environment means there is now an easier path to greater scalability.

Barrenechea considers SGI’s entry into Microsoft’s software ecosystem a significant step for them. “Sure, we’ve supported Windows and certified it,” he says, ‘but it’s a new focus for the company.”

Of course, Linux will be the operating system of choice for most HPC users. And, in fact, Altix UV scalability is still better on that OS. Red Hat Enterprise Linux 6 reaches to 8 TB of memory, while SUSE Linux Enterprise Server 11 hits the full 16 TB. Conveniently, Linux also supports all 2,048 cores of a top-end UV, although it’s hard to imagine an SMP-based code scaled to that level.

It should be noted that the memory limit on the Altix UV is actually constrained by the current generation of Xeon chips, whose 44-bit addressing scheme maxes out at 16 TB. If your data outgrows that capacity, Intel’s next-generation “Sandy Bridge” Xeons will add a couple more bits to quadruple its memory reach to 64 TB. According to SGI’s Goh, the company plans to support the new chips in an upcoming version of the Altix UV, and already have one order for such a system.

Core counts on the next-generation Altix UV may rise as well, although the most acute demand will remain on the memory capacity side. In any case, one or more of the supported OS’s will likely be tweaked to support any new limits SGI comes up with in future UV hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This