Intel Scales Up Cores and Memory with New Westmere EX CPUs

By Michael Feldman

April 6, 2011

This week Intel launched its new Westmere EX lineup, the latest Xeons aimed at large-memory, multi-socketed servers. The new chips come in 6-, 8- and 10-core flavors and will be sold under the name Xeon E7. According to Intel, these latest CPUs deliver 40 percent greater performance than the previous generation Nehalem EX (Xeon 7500 and 6500) processors while maintaining the same power draw.

Compared to the 45nm-based Nehalem EX line, the E7 silicon is on 32nm process technology, which allowed them to add a couple of more cores and an additional 6 MB of L3 cache to the top-end chip. Despite that, Intel only grew the transistor count modestly, from 2.3 billion to 2.6 billion. The thrust was to make the cores smarter and more efficient at their job, not to rely on the brute force of Moore’s Law.

The E7s are 42 percent quicker than their Nehalem ancestors, at least at integer throughput (using the SPECint_rate_base2006 benchmark). One might wonder how Intel accomplished this since they only increased the core count and L3 cache by 25 percent apiece. Apparently 11 percent of the performance increase is the result of optimizations in the latest Intel Compiler XE2011. The rest of the performance bump can probably be attributed to the faster clock for the E7. (Intel pitted a 2.4 GHz E7-4870 against a 2.26 GHz Nehalem X7560 in their benchmark tests.) Floating point throughput (SPECfp_rate_base2006) increased at a more modest 32 percent.

Using the OpenMP benchmark (SPEC OMP2001) for shared memory throughput, the E7-4870 only delivered an 18 percent boost compared to the Nehalem X7560. On some real-life memory-intensive HPC workloads, however, performance was on par with the integer and FP results. For example, Intel reported that throughput improved 21 to 37 percent when exercising the E7s on a number of EDA analysis tools. It remains to be seen how other big memory HPC codes fare on the new hardware.

Besides the core count bump, the other notable E7 feature is its support for larger memory capacity. For a four-socket server, the E7 will scale up to 2 GB of RAM and 102 GB/second of bandwidth, which is twice as good as Nehalem EX. Intel accomplished this by adding support for 32 GB DIMM chips. (The E7 still relies on the same 16 DIMM slots per socket.) These 32 GB DIMMs tend to be rather expensive, though, and so far the server OEMs are only offering E7 systems with 16 GB DIMMs. But 1 TB in a four-socket box is quite useful in its own right, and will be able to handle some rather large in-memory databases.

Perhaps more importantly, the E7 chips can be paired with low voltage memory modules (LV DIMMs) to help curb energy consumption, especially on terascale-sized DRAM configurations. Intel has also added integrated memory buffers to further reduce power draw.

Unlike the Nehalem EX line, the E7 family is divided into three different processor series according chip socket support. The E7-2800 series is geared for two-socket systems, while the E7-4800 series is designed for machines with four CPUs. The quad-socket setup is probably the sweet spot for the E7 family given that four CPUs in one server is apt to be less expensive than 2 dual-socket boxes; plus you have twice the memory headroom. The E7-8800 series is for eight socket machines. These CPUs priced at a premium, but if you’re looking for an x86 SMP machine with up to 80 cores (160 threads) and multiple terabytes of memory, this is the CPU for you.

At launch, 19 server makers announced E7-based platforms, including the usual suspects like IBM, HP, Dell, Cisco, and Oracle. The principle destination for these chips will be “mission-critical” enterprise servers, the segment Intel first pursued in a major with its Nehalem EX line. To chase that application space, Intel has incorporated a number of new security and RAS features which, according to them, puts their latest x86 offering on par with RISC CPUs and even their own Itanium chip. Mission-critical enterprise computing is estimated to be worth about $18 billion per year — about twice that of the HPC server market.

But a number of vendors — SGI, Cray, Supermicro, and AMAX, thus far — are also using the E7s to build scaled-up HPC machinery. SGI for example, has latched onto the E7s to refresh their Altix UV shared memory products. The low-end Altix UV 10 and mid-range Altix UV 100 both benefitted from the extra cores and memory capacity.

For example, the UV 100 now scales to 960 cores and 12 TB of shared memory in just two racks. The top-of-the-line Altix UV 1000 can also use the new E7 CPUs, but for architectural reasons and OS limitations still tops out at 2,048 cores and 16 TB of memory. However, you can still take advantage of the more performant 8-core and 10-core E7s, so a UV 1000 can squeeze out more FLOPS per watt than before, and can scale past 20 teraflops of peak performance.

Cray’s CX1000-S is also being offered with E7 chips. Although, Cray didn’t announce specific configurations, as in the Altix UV, the higher performing E7s would make this SMP box faster and/or more power efficient.

Finally, both Supermicro and AMAX have come up with four-socket and eight-socket E7-based servers (these might actually be the same hardware). The top-end offerings delivers up to 80 cores and 2 TB of memory in an 5U form factor, while the four-socket servers provide half that scalability, but in a 1U, 2U, or 4U package. The 8-way offerings can be outfitted with up to four NVIDIA GPUs if you want to pair the E7 parts with some extra vector acceleration. Although these Supermicro and AMAX systems are geared for HPC, at least the non-GPU versions are also being positioned for big memory enterprise workloads.

As you can see from the chart above, these high-end CPUs are priced accordingly. The top-end 130-watt E7-8870 is over $4,600 in quantities of a thousand. More mid-range E7s will run half that, and even the 10-core chip for dual-socket systems runs over $2,500. Intel apparently believes that they are worth the premium, and given that these chip are being paired with lots of expensive DRAM and software, the CPU itself is probably the one of the best-valued components in these high-end shared memory servers.

Regardless, the E7 parts will be less expensive than RISC processors, the Itanium, or any proprietary CPU. At the other end of the price spectrum, Intel will have to contend with AMD, which is planning to launch its Bulldozer-class “Interlagos” CPU in Q3. Those chips come in 12-core and 16-core versions and can populate four-socket servers. So for users with SMP workloads that are chewing on terabytes of data, the x86 architecture is looking a bit more tempting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This