Intel Scales Up Cores and Memory with New Westmere EX CPUs

By Michael Feldman

April 6, 2011

This week Intel launched its new Westmere EX lineup, the latest Xeons aimed at large-memory, multi-socketed servers. The new chips come in 6-, 8- and 10-core flavors and will be sold under the name Xeon E7. According to Intel, these latest CPUs deliver 40 percent greater performance than the previous generation Nehalem EX (Xeon 7500 and 6500) processors while maintaining the same power draw.

Compared to the 45nm-based Nehalem EX line, the E7 silicon is on 32nm process technology, which allowed them to add a couple of more cores and an additional 6 MB of L3 cache to the top-end chip. Despite that, Intel only grew the transistor count modestly, from 2.3 billion to 2.6 billion. The thrust was to make the cores smarter and more efficient at their job, not to rely on the brute force of Moore’s Law.

The E7s are 42 percent quicker than their Nehalem ancestors, at least at integer throughput (using the SPECint_rate_base2006 benchmark). One might wonder how Intel accomplished this since they only increased the core count and L3 cache by 25 percent apiece. Apparently 11 percent of the performance increase is the result of optimizations in the latest Intel Compiler XE2011. The rest of the performance bump can probably be attributed to the faster clock for the E7. (Intel pitted a 2.4 GHz E7-4870 against a 2.26 GHz Nehalem X7560 in their benchmark tests.) Floating point throughput (SPECfp_rate_base2006) increased at a more modest 32 percent.

Using the OpenMP benchmark (SPEC OMP2001) for shared memory throughput, the E7-4870 only delivered an 18 percent boost compared to the Nehalem X7560. On some real-life memory-intensive HPC workloads, however, performance was on par with the integer and FP results. For example, Intel reported that throughput improved 21 to 37 percent when exercising the E7s on a number of EDA analysis tools. It remains to be seen how other big memory HPC codes fare on the new hardware.

Besides the core count bump, the other notable E7 feature is its support for larger memory capacity. For a four-socket server, the E7 will scale up to 2 GB of RAM and 102 GB/second of bandwidth, which is twice as good as Nehalem EX. Intel accomplished this by adding support for 32 GB DIMM chips. (The E7 still relies on the same 16 DIMM slots per socket.) These 32 GB DIMMs tend to be rather expensive, though, and so far the server OEMs are only offering E7 systems with 16 GB DIMMs. But 1 TB in a four-socket box is quite useful in its own right, and will be able to handle some rather large in-memory databases.

Perhaps more importantly, the E7 chips can be paired with low voltage memory modules (LV DIMMs) to help curb energy consumption, especially on terascale-sized DRAM configurations. Intel has also added integrated memory buffers to further reduce power draw.

Unlike the Nehalem EX line, the E7 family is divided into three different processor series according chip socket support. The E7-2800 series is geared for two-socket systems, while the E7-4800 series is designed for machines with four CPUs. The quad-socket setup is probably the sweet spot for the E7 family given that four CPUs in one server is apt to be less expensive than 2 dual-socket boxes; plus you have twice the memory headroom. The E7-8800 series is for eight socket machines. These CPUs priced at a premium, but if you’re looking for an x86 SMP machine with up to 80 cores (160 threads) and multiple terabytes of memory, this is the CPU for you.

At launch, 19 server makers announced E7-based platforms, including the usual suspects like IBM, HP, Dell, Cisco, and Oracle. The principle destination for these chips will be “mission-critical” enterprise servers, the segment Intel first pursued in a major with its Nehalem EX line. To chase that application space, Intel has incorporated a number of new security and RAS features which, according to them, puts their latest x86 offering on par with RISC CPUs and even their own Itanium chip. Mission-critical enterprise computing is estimated to be worth about $18 billion per year — about twice that of the HPC server market.

But a number of vendors — SGI, Cray, Supermicro, and AMAX, thus far — are also using the E7s to build scaled-up HPC machinery. SGI for example, has latched onto the E7s to refresh their Altix UV shared memory products. The low-end Altix UV 10 and mid-range Altix UV 100 both benefitted from the extra cores and memory capacity.

For example, the UV 100 now scales to 960 cores and 12 TB of shared memory in just two racks. The top-of-the-line Altix UV 1000 can also use the new E7 CPUs, but for architectural reasons and OS limitations still tops out at 2,048 cores and 16 TB of memory. However, you can still take advantage of the more performant 8-core and 10-core E7s, so a UV 1000 can squeeze out more FLOPS per watt than before, and can scale past 20 teraflops of peak performance.

Cray’s CX1000-S is also being offered with E7 chips. Although, Cray didn’t announce specific configurations, as in the Altix UV, the higher performing E7s would make this SMP box faster and/or more power efficient.

Finally, both Supermicro and AMAX have come up with four-socket and eight-socket E7-based servers (these might actually be the same hardware). The top-end offerings delivers up to 80 cores and 2 TB of memory in an 5U form factor, while the four-socket servers provide half that scalability, but in a 1U, 2U, or 4U package. The 8-way offerings can be outfitted with up to four NVIDIA GPUs if you want to pair the E7 parts with some extra vector acceleration. Although these Supermicro and AMAX systems are geared for HPC, at least the non-GPU versions are also being positioned for big memory enterprise workloads.

As you can see from the chart above, these high-end CPUs are priced accordingly. The top-end 130-watt E7-8870 is over $4,600 in quantities of a thousand. More mid-range E7s will run half that, and even the 10-core chip for dual-socket systems runs over $2,500. Intel apparently believes that they are worth the premium, and given that these chip are being paired with lots of expensive DRAM and software, the CPU itself is probably the one of the best-valued components in these high-end shared memory servers.

Regardless, the E7 parts will be less expensive than RISC processors, the Itanium, or any proprietary CPU. At the other end of the price spectrum, Intel will have to contend with AMD, which is planning to launch its Bulldozer-class “Interlagos” CPU in Q3. Those chips come in 12-core and 16-core versions and can populate four-socket servers. So for users with SMP workloads that are chewing on terabytes of data, the x86 architecture is looking a bit more tempting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Dell EMC’s HPC Chief on Strategy and Emerging Processor Diversity

November 16, 2018

Last January Thierry Pellegrino, a long-time Dell/Dell EMC veteran, became vice president of HPC. His tenure comes at a time when the very definition of HPC is blurring with AI writ large (data analytics, machine learnin Read more…

By John Russell

IBM’s AI-HPC Combine for ‘Intelligent Simulation’: Eliminating the Unnecessary 

November 16, 2018

A powerhouse concept in attaining new knowledge is the notion of the “emergent property,” the combination of formerly stovepiped scientific disciplines and exploratory methods to form cross-disciplinary intelligence Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Dell EMC’s HPC Chief on Strategy and Emerging Processor Diversity

November 16, 2018

Last January Thierry Pellegrino, a long-time Dell/Dell EMC veteran, became vice president of HPC. His tenure comes at a time when the very definition of HPC is Read more…

By John Russell

IBM’s AI-HPC Combine for ‘Intelligent Simulation’: Eliminating the Unnecessary 

November 16, 2018

A powerhouse concept in attaining new knowledge is the notion of the “emergent property,” the combination of formerly stovepiped scientific disciplines and Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

At SC18: AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This