Intel Scales Up Cores and Memory with New Westmere EX CPUs

By Michael Feldman

April 6, 2011

This week Intel launched its new Westmere EX lineup, the latest Xeons aimed at large-memory, multi-socketed servers. The new chips come in 6-, 8- and 10-core flavors and will be sold under the name Xeon E7. According to Intel, these latest CPUs deliver 40 percent greater performance than the previous generation Nehalem EX (Xeon 7500 and 6500) processors while maintaining the same power draw.

Compared to the 45nm-based Nehalem EX line, the E7 silicon is on 32nm process technology, which allowed them to add a couple of more cores and an additional 6 MB of L3 cache to the top-end chip. Despite that, Intel only grew the transistor count modestly, from 2.3 billion to 2.6 billion. The thrust was to make the cores smarter and more efficient at their job, not to rely on the brute force of Moore’s Law.

The E7s are 42 percent quicker than their Nehalem ancestors, at least at integer throughput (using the SPECint_rate_base2006 benchmark). One might wonder how Intel accomplished this since they only increased the core count and L3 cache by 25 percent apiece. Apparently 11 percent of the performance increase is the result of optimizations in the latest Intel Compiler XE2011. The rest of the performance bump can probably be attributed to the faster clock for the E7. (Intel pitted a 2.4 GHz E7-4870 against a 2.26 GHz Nehalem X7560 in their benchmark tests.) Floating point throughput (SPECfp_rate_base2006) increased at a more modest 32 percent.

Using the OpenMP benchmark (SPEC OMP2001) for shared memory throughput, the E7-4870 only delivered an 18 percent boost compared to the Nehalem X7560. On some real-life memory-intensive HPC workloads, however, performance was on par with the integer and FP results. For example, Intel reported that throughput improved 21 to 37 percent when exercising the E7s on a number of EDA analysis tools. It remains to be seen how other big memory HPC codes fare on the new hardware.

Besides the core count bump, the other notable E7 feature is its support for larger memory capacity. For a four-socket server, the E7 will scale up to 2 GB of RAM and 102 GB/second of bandwidth, which is twice as good as Nehalem EX. Intel accomplished this by adding support for 32 GB DIMM chips. (The E7 still relies on the same 16 DIMM slots per socket.) These 32 GB DIMMs tend to be rather expensive, though, and so far the server OEMs are only offering E7 systems with 16 GB DIMMs. But 1 TB in a four-socket box is quite useful in its own right, and will be able to handle some rather large in-memory databases.

Perhaps more importantly, the E7 chips can be paired with low voltage memory modules (LV DIMMs) to help curb energy consumption, especially on terascale-sized DRAM configurations. Intel has also added integrated memory buffers to further reduce power draw.

Unlike the Nehalem EX line, the E7 family is divided into three different processor series according chip socket support. The E7-2800 series is geared for two-socket systems, while the E7-4800 series is designed for machines with four CPUs. The quad-socket setup is probably the sweet spot for the E7 family given that four CPUs in one server is apt to be less expensive than 2 dual-socket boxes; plus you have twice the memory headroom. The E7-8800 series is for eight socket machines. These CPUs priced at a premium, but if you’re looking for an x86 SMP machine with up to 80 cores (160 threads) and multiple terabytes of memory, this is the CPU for you.

At launch, 19 server makers announced E7-based platforms, including the usual suspects like IBM, HP, Dell, Cisco, and Oracle. The principle destination for these chips will be “mission-critical” enterprise servers, the segment Intel first pursued in a major with its Nehalem EX line. To chase that application space, Intel has incorporated a number of new security and RAS features which, according to them, puts their latest x86 offering on par with RISC CPUs and even their own Itanium chip. Mission-critical enterprise computing is estimated to be worth about $18 billion per year — about twice that of the HPC server market.

But a number of vendors — SGI, Cray, Supermicro, and AMAX, thus far — are also using the E7s to build scaled-up HPC machinery. SGI for example, has latched onto the E7s to refresh their Altix UV shared memory products. The low-end Altix UV 10 and mid-range Altix UV 100 both benefitted from the extra cores and memory capacity.

For example, the UV 100 now scales to 960 cores and 12 TB of shared memory in just two racks. The top-of-the-line Altix UV 1000 can also use the new E7 CPUs, but for architectural reasons and OS limitations still tops out at 2,048 cores and 16 TB of memory. However, you can still take advantage of the more performant 8-core and 10-core E7s, so a UV 1000 can squeeze out more FLOPS per watt than before, and can scale past 20 teraflops of peak performance.

Cray’s CX1000-S is also being offered with E7 chips. Although, Cray didn’t announce specific configurations, as in the Altix UV, the higher performing E7s would make this SMP box faster and/or more power efficient.

Finally, both Supermicro and AMAX have come up with four-socket and eight-socket E7-based servers (these might actually be the same hardware). The top-end offerings delivers up to 80 cores and 2 TB of memory in an 5U form factor, while the four-socket servers provide half that scalability, but in a 1U, 2U, or 4U package. The 8-way offerings can be outfitted with up to four NVIDIA GPUs if you want to pair the E7 parts with some extra vector acceleration. Although these Supermicro and AMAX systems are geared for HPC, at least the non-GPU versions are also being positioned for big memory enterprise workloads.

As you can see from the chart above, these high-end CPUs are priced accordingly. The top-end 130-watt E7-8870 is over $4,600 in quantities of a thousand. More mid-range E7s will run half that, and even the 10-core chip for dual-socket systems runs over $2,500. Intel apparently believes that they are worth the premium, and given that these chip are being paired with lots of expensive DRAM and software, the CPU itself is probably the one of the best-valued components in these high-end shared memory servers.

Regardless, the E7 parts will be less expensive than RISC processors, the Itanium, or any proprietary CPU. At the other end of the price spectrum, Intel will have to contend with AMD, which is planning to launch its Bulldozer-class “Interlagos” CPU in Q3. Those chips come in 12-core and 16-core versions and can populate four-socket servers. So for users with SMP workloads that are chewing on terabytes of data, the x86 architecture is looking a bit more tempting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This