Watson Takes a Turn on Wall Street

By Michael Feldman

April 7, 2011

In the wake of Watson’s dominant performance on Jeopardy last month, IBM has taken the technology on the road to showcase it to anyone who’ll listen. On Monday, Watson — or rather, its keepers — headlined the opening session of the High Performance Computing Linux Financial Markets Conference in New York City. There was even a Watson demo at the conference, attracting crowds in IBM’s exhibitor booth.

If presenting a research project to a Wall Street crowd seems unusual, keep in mind that IBM does not intend to keep Watson in the lab forever. Commercialization of the technology is clearly in the company’s plan.

Following its Jeopardy win, the supercomputer’s next task will be to apply its analytic smarts to healthcare applications. IBM and Nuance Communications in collaboration with Columbia University Medical Center and the University of Maryland School of Medicine are looking for ways to use Watson to help doctors with patient diagnoses in a real-world medical setting.

Since I was in town for the HPC Wall Street conference, I got the opportunity to chat with two of the IBM’ers that spoke on the topic — Jean Staten Healy, director of the Cross-IBM Linux group, and Edward Epstein, manager of Unstructured Information at IBM Research — and ask them about the how the technology could be applied to financial services.

First though, I wanted to find out more about the Watson design and how it evolved over the three-year project. Since Epstein was one of the primary developers of the Watson software, he was able to give me a rundown on the supercomputer’s path to Jeopardy stardom.

According to him, Watson had a rather unimpressive start. In its first incarnation, it took two hours to spit out the answer to a question (or rather the question to the answer), which obviously wouldn’t do for a prime-time game show. The IBM engineers soon realized they had to do a serious redesign of the 750,000 lines of code if they were ever to be competitive on Jeopardy.

First off, all the data (dictionaries, encyclopedias, historical texts, etc.) had to be placed into RAM. Waiting precious milliseconds for disk reads is a performance killer, so everything got stuffed into memory for lightening-fast access.

But most of the initial effort to boost execution speed involved scaling out the software such that the hundreds of analytics algorithms and natural language processing (NLP) code could be run in parallel. The algorithms were parallelized across the analytics framework — in this case Apache UIMA (Unstructured Information Management Architecture), an open source information management environment that was at the heart of Watson’s software. Also, the search algorithms that looked up data references were distributed across the available cores of the Watson cluster. When the initial scale-out effort was done, there were about 200 Java processes as well as an additional 200 C++ processes running in parallel on Watson’s hardware.

According to Epstein that effort reduced the average answer time to just over 14 seconds. Since, in Jeopardy, you need have the answer in just a few seconds — in most cases just a fraction of a second right after the clue is read — they still needed another four-fold performance boost. Most of that was achieved by precomputing the deep NLP analysis of the pre-canned text and by hammering on every computation outlier. With that accomplished, the average answer time was trimmed to 3.6 seconds — on par with a human Jeopardy champ.

The software development work and the initial sparring matches for Watson were done on an IBM x86 blade cluster, outfitted with Xeon Nehalem CPUs. That system had the ability to store intermediate results, so that during test runs, the software team could execute a partial scenario, and return to it later to run a new calculation based on those intermediates. Also during development, it was important to run thousands of questions simultaneously, rather than a single question for fast real-time execution. So the system was scaled differently than the final Power 750 cluster that was used in the Jeopardy match.
 
The x86 development cluster had much less powerful processors, less memory, and most importantly less memory bandwidth compared to the Power 750 machine. Fundamentally, Watson is a big data app that feeds large amounts of information through a complex framework of analytics software. The fact the this needs to be done interactively puts particular constraints on performance.

According to Epstein, they needed the performance of the Power 750 to be competitive in Jeopardy. Fortunately, porting the software from the x86 blades system to the Power cluster was fairly straightforward, given that the software stack is all based on portable technology (Java, C++, Linux, and UIMA).

A single 750 node has four 8-core 3.5 GHz Power7 CPUs, and the entire system consisted of ninety such nodes, encapsulating 2,880 CPUs and 16 TB of RAM. The peak performance of the Jeopardy system is estimated to be about 80 teraflops.

The Watson software team added a number of Power7 optimizations to bump up the performance a bit more. Most of that involved using NUMA control to pin software processes to specific resources in the machine. “If you’re really trying to get that last edge in performance, then you do things like that,” said Epstein.

The ninety cluster Power7 was probably a bit of overkill for the Jeopardy match. Epstein estimates that CPU utilization was in the neighborhood of 30 percent during the clue processing (So theoretically, Watson could have been playing two additional Jeopardy matches simultaneously.) In any case, it was Epstein’s task to win the match at any cost, CPU utilization be damned. “I had the luxury of having enough hardware to do this job for Jeopardy,” he explained.

So what is Watson doing on Wall Street? IBM might be looking to attract some willing partners for a Watson-style financial analytics project analogous to the aforementioned healthcare research initiative. Big Blue is obviously proud of the technology and believes the system can be applied to all sorts of deep analytics work.

Epstein himself is currently working in the group involved in the healthcare project, but there are a number of individuals who are exploring “other opportunities.” One group is specifically focused on the financial application space.

IBM’s Healy believes a major focus for the technology in the financial arena will involve risk management. The idea is to provide results that will enable investors and money managers to make very fast decisions based on market conditions. Healy said it would not just involve spitting out a single answer like in Jeopardy, but also provide metrics of confidence about that answer, as well as some sort of evidence trail of its analysis.

Healy also suggested the possibility that Watson could serve as a resource for individuals making personal investments decisions. One could envision a sort of “Ask Watson” application that could serve thousands or even millions of investors simultaneously (assuming the machine was scaled appropriately). For this type of work, Watson might have to solicit information from the user based on the specific investment question. In that sense, Watson couldn’t just be an answer machine; it would need some rudimentary conversational skills as well. While Healy concedes the technology is still in the research stage, from her perspective, it has many applications going forward.

I suspect Watson will show up at a lot of conferences this year as IBM tests the waters for the technology. Deep analytics is broadly applicable to many domains and this has all the makings of a high-margin business for IBM. They just need to gather some proof points.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This