Watson Takes a Turn on Wall Street

By Michael Feldman

April 7, 2011

In the wake of Watson’s dominant performance on Jeopardy last month, IBM has taken the technology on the road to showcase it to anyone who’ll listen. On Monday, Watson — or rather, its keepers — headlined the opening session of the High Performance Computing Linux Financial Markets Conference in New York City. There was even a Watson demo at the conference, attracting crowds in IBM’s exhibitor booth.

If presenting a research project to a Wall Street crowd seems unusual, keep in mind that IBM does not intend to keep Watson in the lab forever. Commercialization of the technology is clearly in the company’s plan.

Following its Jeopardy win, the supercomputer’s next task will be to apply its analytic smarts to healthcare applications. IBM and Nuance Communications in collaboration with Columbia University Medical Center and the University of Maryland School of Medicine are looking for ways to use Watson to help doctors with patient diagnoses in a real-world medical setting.

Since I was in town for the HPC Wall Street conference, I got the opportunity to chat with two of the IBM’ers that spoke on the topic — Jean Staten Healy, director of the Cross-IBM Linux group, and Edward Epstein, manager of Unstructured Information at IBM Research — and ask them about the how the technology could be applied to financial services.

First though, I wanted to find out more about the Watson design and how it evolved over the three-year project. Since Epstein was one of the primary developers of the Watson software, he was able to give me a rundown on the supercomputer’s path to Jeopardy stardom.

According to him, Watson had a rather unimpressive start. In its first incarnation, it took two hours to spit out the answer to a question (or rather the question to the answer), which obviously wouldn’t do for a prime-time game show. The IBM engineers soon realized they had to do a serious redesign of the 750,000 lines of code if they were ever to be competitive on Jeopardy.

First off, all the data (dictionaries, encyclopedias, historical texts, etc.) had to be placed into RAM. Waiting precious milliseconds for disk reads is a performance killer, so everything got stuffed into memory for lightening-fast access.

But most of the initial effort to boost execution speed involved scaling out the software such that the hundreds of analytics algorithms and natural language processing (NLP) code could be run in parallel. The algorithms were parallelized across the analytics framework — in this case Apache UIMA (Unstructured Information Management Architecture), an open source information management environment that was at the heart of Watson’s software. Also, the search algorithms that looked up data references were distributed across the available cores of the Watson cluster. When the initial scale-out effort was done, there were about 200 Java processes as well as an additional 200 C++ processes running in parallel on Watson’s hardware.

According to Epstein that effort reduced the average answer time to just over 14 seconds. Since, in Jeopardy, you need have the answer in just a few seconds — in most cases just a fraction of a second right after the clue is read — they still needed another four-fold performance boost. Most of that was achieved by precomputing the deep NLP analysis of the pre-canned text and by hammering on every computation outlier. With that accomplished, the average answer time was trimmed to 3.6 seconds — on par with a human Jeopardy champ.

The software development work and the initial sparring matches for Watson were done on an IBM x86 blade cluster, outfitted with Xeon Nehalem CPUs. That system had the ability to store intermediate results, so that during test runs, the software team could execute a partial scenario, and return to it later to run a new calculation based on those intermediates. Also during development, it was important to run thousands of questions simultaneously, rather than a single question for fast real-time execution. So the system was scaled differently than the final Power 750 cluster that was used in the Jeopardy match.
 
The x86 development cluster had much less powerful processors, less memory, and most importantly less memory bandwidth compared to the Power 750 machine. Fundamentally, Watson is a big data app that feeds large amounts of information through a complex framework of analytics software. The fact the this needs to be done interactively puts particular constraints on performance.

According to Epstein, they needed the performance of the Power 750 to be competitive in Jeopardy. Fortunately, porting the software from the x86 blades system to the Power cluster was fairly straightforward, given that the software stack is all based on portable technology (Java, C++, Linux, and UIMA).

A single 750 node has four 8-core 3.5 GHz Power7 CPUs, and the entire system consisted of ninety such nodes, encapsulating 2,880 CPUs and 16 TB of RAM. The peak performance of the Jeopardy system is estimated to be about 80 teraflops.

The Watson software team added a number of Power7 optimizations to bump up the performance a bit more. Most of that involved using NUMA control to pin software processes to specific resources in the machine. “If you’re really trying to get that last edge in performance, then you do things like that,” said Epstein.

The ninety cluster Power7 was probably a bit of overkill for the Jeopardy match. Epstein estimates that CPU utilization was in the neighborhood of 30 percent during the clue processing (So theoretically, Watson could have been playing two additional Jeopardy matches simultaneously.) In any case, it was Epstein’s task to win the match at any cost, CPU utilization be damned. “I had the luxury of having enough hardware to do this job for Jeopardy,” he explained.

So what is Watson doing on Wall Street? IBM might be looking to attract some willing partners for a Watson-style financial analytics project analogous to the aforementioned healthcare research initiative. Big Blue is obviously proud of the technology and believes the system can be applied to all sorts of deep analytics work.

Epstein himself is currently working in the group involved in the healthcare project, but there are a number of individuals who are exploring “other opportunities.” One group is specifically focused on the financial application space.

IBM’s Healy believes a major focus for the technology in the financial arena will involve risk management. The idea is to provide results that will enable investors and money managers to make very fast decisions based on market conditions. Healy said it would not just involve spitting out a single answer like in Jeopardy, but also provide metrics of confidence about that answer, as well as some sort of evidence trail of its analysis.

Healy also suggested the possibility that Watson could serve as a resource for individuals making personal investments decisions. One could envision a sort of “Ask Watson” application that could serve thousands or even millions of investors simultaneously (assuming the machine was scaled appropriately). For this type of work, Watson might have to solicit information from the user based on the specific investment question. In that sense, Watson couldn’t just be an answer machine; it would need some rudimentary conversational skills as well. While Healy concedes the technology is still in the research stage, from her perspective, it has many applications going forward.

I suspect Watson will show up at a lot of conferences this year as IBM tests the waters for the technology. Deep analytics is broadly applicable to many domains and this has all the makings of a high-margin business for IBM. They just need to gather some proof points.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This