Watson Takes a Turn on Wall Street

By Michael Feldman

April 7, 2011

In the wake of Watson’s dominant performance on Jeopardy last month, IBM has taken the technology on the road to showcase it to anyone who’ll listen. On Monday, Watson — or rather, its keepers — headlined the opening session of the High Performance Computing Linux Financial Markets Conference in New York City. There was even a Watson demo at the conference, attracting crowds in IBM’s exhibitor booth.

If presenting a research project to a Wall Street crowd seems unusual, keep in mind that IBM does not intend to keep Watson in the lab forever. Commercialization of the technology is clearly in the company’s plan.

Following its Jeopardy win, the supercomputer’s next task will be to apply its analytic smarts to healthcare applications. IBM and Nuance Communications in collaboration with Columbia University Medical Center and the University of Maryland School of Medicine are looking for ways to use Watson to help doctors with patient diagnoses in a real-world medical setting.

Since I was in town for the HPC Wall Street conference, I got the opportunity to chat with two of the IBM’ers that spoke on the topic — Jean Staten Healy, director of the Cross-IBM Linux group, and Edward Epstein, manager of Unstructured Information at IBM Research — and ask them about the how the technology could be applied to financial services.

First though, I wanted to find out more about the Watson design and how it evolved over the three-year project. Since Epstein was one of the primary developers of the Watson software, he was able to give me a rundown on the supercomputer’s path to Jeopardy stardom.

According to him, Watson had a rather unimpressive start. In its first incarnation, it took two hours to spit out the answer to a question (or rather the question to the answer), which obviously wouldn’t do for a prime-time game show. The IBM engineers soon realized they had to do a serious redesign of the 750,000 lines of code if they were ever to be competitive on Jeopardy.

First off, all the data (dictionaries, encyclopedias, historical texts, etc.) had to be placed into RAM. Waiting precious milliseconds for disk reads is a performance killer, so everything got stuffed into memory for lightening-fast access.

But most of the initial effort to boost execution speed involved scaling out the software such that the hundreds of analytics algorithms and natural language processing (NLP) code could be run in parallel. The algorithms were parallelized across the analytics framework — in this case Apache UIMA (Unstructured Information Management Architecture), an open source information management environment that was at the heart of Watson’s software. Also, the search algorithms that looked up data references were distributed across the available cores of the Watson cluster. When the initial scale-out effort was done, there were about 200 Java processes as well as an additional 200 C++ processes running in parallel on Watson’s hardware.

According to Epstein that effort reduced the average answer time to just over 14 seconds. Since, in Jeopardy, you need have the answer in just a few seconds — in most cases just a fraction of a second right after the clue is read — they still needed another four-fold performance boost. Most of that was achieved by precomputing the deep NLP analysis of the pre-canned text and by hammering on every computation outlier. With that accomplished, the average answer time was trimmed to 3.6 seconds — on par with a human Jeopardy champ.

The software development work and the initial sparring matches for Watson were done on an IBM x86 blade cluster, outfitted with Xeon Nehalem CPUs. That system had the ability to store intermediate results, so that during test runs, the software team could execute a partial scenario, and return to it later to run a new calculation based on those intermediates. Also during development, it was important to run thousands of questions simultaneously, rather than a single question for fast real-time execution. So the system was scaled differently than the final Power 750 cluster that was used in the Jeopardy match.
The x86 development cluster had much less powerful processors, less memory, and most importantly less memory bandwidth compared to the Power 750 machine. Fundamentally, Watson is a big data app that feeds large amounts of information through a complex framework of analytics software. The fact the this needs to be done interactively puts particular constraints on performance.

According to Epstein, they needed the performance of the Power 750 to be competitive in Jeopardy. Fortunately, porting the software from the x86 blades system to the Power cluster was fairly straightforward, given that the software stack is all based on portable technology (Java, C++, Linux, and UIMA).

A single 750 node has four 8-core 3.5 GHz Power7 CPUs, and the entire system consisted of ninety such nodes, encapsulating 2,880 CPUs and 16 TB of RAM. The peak performance of the Jeopardy system is estimated to be about 80 teraflops.

The Watson software team added a number of Power7 optimizations to bump up the performance a bit more. Most of that involved using NUMA control to pin software processes to specific resources in the machine. “If you’re really trying to get that last edge in performance, then you do things like that,” said Epstein.

The ninety cluster Power7 was probably a bit of overkill for the Jeopardy match. Epstein estimates that CPU utilization was in the neighborhood of 30 percent during the clue processing (So theoretically, Watson could have been playing two additional Jeopardy matches simultaneously.) In any case, it was Epstein’s task to win the match at any cost, CPU utilization be damned. “I had the luxury of having enough hardware to do this job for Jeopardy,” he explained.

So what is Watson doing on Wall Street? IBM might be looking to attract some willing partners for a Watson-style financial analytics project analogous to the aforementioned healthcare research initiative. Big Blue is obviously proud of the technology and believes the system can be applied to all sorts of deep analytics work.

Epstein himself is currently working in the group involved in the healthcare project, but there are a number of individuals who are exploring “other opportunities.” One group is specifically focused on the financial application space.

IBM’s Healy believes a major focus for the technology in the financial arena will involve risk management. The idea is to provide results that will enable investors and money managers to make very fast decisions based on market conditions. Healy said it would not just involve spitting out a single answer like in Jeopardy, but also provide metrics of confidence about that answer, as well as some sort of evidence trail of its analysis.

Healy also suggested the possibility that Watson could serve as a resource for individuals making personal investments decisions. One could envision a sort of “Ask Watson” application that could serve thousands or even millions of investors simultaneously (assuming the machine was scaled appropriately). For this type of work, Watson might have to solicit information from the user based on the specific investment question. In that sense, Watson couldn’t just be an answer machine; it would need some rudimentary conversational skills as well. While Healy concedes the technology is still in the research stage, from her perspective, it has many applications going forward.

I suspect Watson will show up at a lot of conferences this year as IBM tests the waters for the technology. Deep analytics is broadly applicable to many domains and this has all the makings of a high-margin business for IBM. They just need to gather some proof points.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This