Boosting Biology with High Performance Clouds

By Asoke K. Talukder, Ph.D

April 11, 2011

There is a general interest to quantify biology to help growth of economy and affordable healthcare without causing much damage to the environment. This interest is both at the political level and at the scientific levels. From nutritional security to biofuel and beyond, all have roots in quantification of biology, we need to understand the theory behind all biological events that happen around us, whether within a cell due to a pathogen or in the environment due to the toxic industrial waste.

To manage this range of biological event, we need to understand the cause and effect equation of biological events. This is the reason, biology as a whole is embracing technology at an unprecedented rate. The main challenge in quantifying biology is that most of the biology problems are NP-hard; they need supercomputers to solve almost any problem. Therefore, biosciences research was always been the domain of computational elites who has access to large supercomputers.

Though many algorithms have been perfected in the recent past, the voluminous data from a NGS (Next Generation Sequencer) and increase in metadata have offset the benefits of these smarter algorithms. Newer and efficient algorithms combined with high performance cloud computing opens up the opportunity for smaller labs and under-privileged researchers and clinicians to engage in biology research and join the mainstream. The cloud also opens up the possibility for small clinics to offer personalized medicine who otherwise could not afford a supercomputer.

The new age genomics and the NGS technology in particular pushes the realm of compu-ting like never before. The challenges are immense as there is a need for parallel and efficient algorithms and tools to solve the data tsunami that the NGS machines offload. For example, the latest HiSeq 2000 from Illumina Inc, is expected to generate close to about 600 gigabase to 1 terabase per run. This data deluge coupled with the NP-hard nature of biological problems makes computer scientists to innovate newer and better techniques for transferring, managing, processing, decoding and analyzing the NGS data haze to unearth meaningful insights that can be applied to improve the quality of life.  

In the last few decades Web and network-delivered services have changed people’s lives. This technology has effectively “shrunk the world” and brought it into the pockets of individuals; it also helped the technology in a different way – it moved the center-stage of technology from giant technology companies to the technologists and technology consumers. Today an underprivileged entrepreneur somewhere in the world can innovate and open a shop in the Web and be successful. Likewise, HPC (High Performance Computing) accelerated by the cloud will transform the biotechnology, and life-sciences research, disease prognosis, and disease therapeutics. Unlike other domains.

In the life sciences almost everything is available in the open domain – most of the journals are open-access and free – even nicely catalogued in PubMed; almost all software are open-domain if not open source; even better is that, all experimental data are available for verification, download, and use. There are databases like NCBI (National Center for Biotechnology Information), Hapmap, SMD (Stanford Microarray Database), that archives data from genome to protein, microarray to microRNA. Anything anybody needs is available for free. The only component that was missing in this whole equation is the supercomputer. The cloud bridges this gap – a researcher can now do almost anything on the cloud. The cloud not only addresses the CPU power needs of a NP-hard problem, but also will addresses the storage requirements of hundreds of terabytes of storage a biology experiment might need. Though the communication technology is not ready yet to transfer such large volume of data online, the cloud vendors have perfected transfer of data offline.

High Performance Cloud Computing (HPCC) is poised to become the disruptive technology of the 21st century for lifesciences; cloud computing in particular will become an essential tool in the world for the biotechnology research for farmers, and clinicians alike. From high yield crops to industrial enzymes to high productive livestock and finally in Personalized medicine. HPCC solutions comprising of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) will play a pivotal role in translating lifescience to affordable applications. Cloud computing will be the highway to reduce the divide between computational elite and computational underprivileged, With cloud computing one can realize flexible, on-demand, and low-cost compute infrastructure whenever you want, wherever you want.

Another trend that will emerge along these lines very soon is the outsourcing model in biotechnology. Today the computational elites have monopolized the biotech research – they have large supercomputers with a large team of bioinformaticians. This will soon change – bioinformatics will graduate to computational quantitative biology with many smart researches offering their solutions in the clous mainly as an SaaS. Cloud computing is of particular benefit to small and medium-sized research centers, farmers, and clinicians who wish to outsource their data-center infrastructure, or large centers who wish to get peak load capacity without incurring the higher cost of ownership hrough larger data centers internally. In both instances, service consumers will use what they need on the Internet and pay only for what they use.

The next generation lifesciences, biotechnology, and healthcare applications will be a con-glomeration of a gamut of tools including but not limited to Systems biology, High Performance cloud computing systems, computer algorithms, mathematics, statistics, biological networks, molecular interaction pathways, Protein-enzyme-simulations, etc. Each of these techniques have a pivotal role to play in deciphering the complex human – environment system and thereby providing enough insights to translate research into appllication or science into discovery, be it personalized medicine, industrial bio-products, agri products or livestock systems. However, the question that we need to answer is how to make this future wellbeing system accessible, omnibus, and affordable for everybody? The answer is in integration of engineering, technology and science. Here there is an unanimous choice for high performance cloud computing – as, it enables and ignites affordable next generation genomics applications to reach the masses in the form of new therepies, drugs, better crops, sustainable enviroment, and proactive and preventive medicine.

About the Author

Asoke Talukder is an author, professor, and a practicing computational geneticist. He worked in tech-nology domains for companies like ICL, Fujitsu-ICIM, Microsoft, Oracle, Informix, Digital, Hewlett Packard, Sequoia, Northern Telecom, NEC, KredietBank, iGate, Cellnext, etc. He Internet enabled Microsoft PowerPoint, engineered the first 64-bit database (Informix), engineered Oracle Parallel Server for Fault Tolerant computer, and developed many killer technologies and products. He setup the first X.25 network in India for Department of Telecommunications (currently BSNL & MTNL), and the first Java Competency Centre in India. He engineered the Network Management System for Queen’s Award winning PDMX. He is recipient of many international awards for innovation and professional excellence including ICIM Professional Excellence Award, ICL Excellence Award, IBM Solutions Excellence Award, Simagine GSMWorld Award, All India Radio/Doordarshan Award etcetera. Asoke has been listed in “Who’s Who in the World”, “Who’s Who in Science and Engineering”, and “Outstanding Scientists of 21st Century”. He authored many research articles, book chapters, and textbooks. Asoke did M.Sc (Physics) with Bio-physics major and Ph.D (Computer Engineering). He was the DaimlerChrysler Chair Professor at IIIT-Bangalore, and currently Adjunct Faculty at Indian Institute of Information Technology & Management, Gwalior, Department of Computer Engineering, NITK Surathkal, and Department of Computer Science & Engineering, NIT Warangal. His current domain of expertise is in Computational Genomics and Statistical Bioinformatics. Along with teaching, he is founder of Geschickten Biosciences, a company in the domain of Computational Quantitative Biology focusing on Omic sciences analytics, GenomicsCloud, and Personalized/Holistic Medicine & Wellbeing.
 
About Geschickten Biosciences

To solve the challenges posed by the current Genomics technology such as Next Generation Sequencing, Geschickten has designed GenomicsCloud a novel cloud based software-as-a-services application for managing, analyzing and visualizing NGS data. A simple yet powerful software engine for NGS data analytics, Genomics Cloud will bring the power of a supercomputer accessible through a mobile device. One area that still remains as the concern in the cloud, is the data security and conformance to the regulatory requirements for transfer of genomics data across geographical boundaries. To mitigate this challenge, Geschickten has added an additional layer in the Cloud computing stack that will address the security requirements. This is termed as the cloud vendor layer. Cloud vendors will primarily be cloud resource aggregators, who will aggregate the services of many Original cloud providers’ and offer the services to the end biologist at an affordable price that will conform to the regulatory and taxation requirement of the end-user and the geography. The cloud vendor will ensure data transfer, data security, data management, and charging. This layer will also ensure some of the concerns of multi-tenancy in the Cloud.

Geschickten Biosciences (www.geschickten.com) is a niche scientific intelligence company from Bangalore, India. The first Computational Quantitative Biology company from India Geschickten offers a wide range of products and scientific services to independent researchers, sequencing centers and industry including but not limited to Biotechs, Pharmaceuticals, Chemical, FMCG, and Biofuel companies etc. As experts in in NGS data analytics and Microarray data analysis, Geschickten is combining engineering, technology and science to translate research into discovery. Geschickten offers innovative technological solutions for Agriculture research, Animal biology, Environmental science and in human genetics.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This