Boosting Biology with High Performance Clouds

By Asoke K. Talukder, Ph.D

April 11, 2011

There is a general interest to quantify biology to help growth of economy and affordable healthcare without causing much damage to the environment. This interest is both at the political level and at the scientific levels. From nutritional security to biofuel and beyond, all have roots in quantification of biology, we need to understand the theory behind all biological events that happen around us, whether within a cell due to a pathogen or in the environment due to the toxic industrial waste.

To manage this range of biological event, we need to understand the cause and effect equation of biological events. This is the reason, biology as a whole is embracing technology at an unprecedented rate. The main challenge in quantifying biology is that most of the biology problems are NP-hard; they need supercomputers to solve almost any problem. Therefore, biosciences research was always been the domain of computational elites who has access to large supercomputers.

Though many algorithms have been perfected in the recent past, the voluminous data from a NGS (Next Generation Sequencer) and increase in metadata have offset the benefits of these smarter algorithms. Newer and efficient algorithms combined with high performance cloud computing opens up the opportunity for smaller labs and under-privileged researchers and clinicians to engage in biology research and join the mainstream. The cloud also opens up the possibility for small clinics to offer personalized medicine who otherwise could not afford a supercomputer.

The new age genomics and the NGS technology in particular pushes the realm of compu-ting like never before. The challenges are immense as there is a need for parallel and efficient algorithms and tools to solve the data tsunami that the NGS machines offload. For example, the latest HiSeq 2000 from Illumina Inc, is expected to generate close to about 600 gigabase to 1 terabase per run. This data deluge coupled with the NP-hard nature of biological problems makes computer scientists to innovate newer and better techniques for transferring, managing, processing, decoding and analyzing the NGS data haze to unearth meaningful insights that can be applied to improve the quality of life.  

In the last few decades Web and network-delivered services have changed people’s lives. This technology has effectively “shrunk the world” and brought it into the pockets of individuals; it also helped the technology in a different way – it moved the center-stage of technology from giant technology companies to the technologists and technology consumers. Today an underprivileged entrepreneur somewhere in the world can innovate and open a shop in the Web and be successful. Likewise, HPC (High Performance Computing) accelerated by the cloud will transform the biotechnology, and life-sciences research, disease prognosis, and disease therapeutics. Unlike other domains.

In the life sciences almost everything is available in the open domain – most of the journals are open-access and free – even nicely catalogued in PubMed; almost all software are open-domain if not open source; even better is that, all experimental data are available for verification, download, and use. There are databases like NCBI (National Center for Biotechnology Information), Hapmap, SMD (Stanford Microarray Database), that archives data from genome to protein, microarray to microRNA. Anything anybody needs is available for free. The only component that was missing in this whole equation is the supercomputer. The cloud bridges this gap – a researcher can now do almost anything on the cloud. The cloud not only addresses the CPU power needs of a NP-hard problem, but also will addresses the storage requirements of hundreds of terabytes of storage a biology experiment might need. Though the communication technology is not ready yet to transfer such large volume of data online, the cloud vendors have perfected transfer of data offline.

High Performance Cloud Computing (HPCC) is poised to become the disruptive technology of the 21st century for lifesciences; cloud computing in particular will become an essential tool in the world for the biotechnology research for farmers, and clinicians alike. From high yield crops to industrial enzymes to high productive livestock and finally in Personalized medicine. HPCC solutions comprising of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) will play a pivotal role in translating lifescience to affordable applications. Cloud computing will be the highway to reduce the divide between computational elite and computational underprivileged, With cloud computing one can realize flexible, on-demand, and low-cost compute infrastructure whenever you want, wherever you want.

Another trend that will emerge along these lines very soon is the outsourcing model in biotechnology. Today the computational elites have monopolized the biotech research – they have large supercomputers with a large team of bioinformaticians. This will soon change – bioinformatics will graduate to computational quantitative biology with many smart researches offering their solutions in the clous mainly as an SaaS. Cloud computing is of particular benefit to small and medium-sized research centers, farmers, and clinicians who wish to outsource their data-center infrastructure, or large centers who wish to get peak load capacity without incurring the higher cost of ownership hrough larger data centers internally. In both instances, service consumers will use what they need on the Internet and pay only for what they use.

The next generation lifesciences, biotechnology, and healthcare applications will be a con-glomeration of a gamut of tools including but not limited to Systems biology, High Performance cloud computing systems, computer algorithms, mathematics, statistics, biological networks, molecular interaction pathways, Protein-enzyme-simulations, etc. Each of these techniques have a pivotal role to play in deciphering the complex human – environment system and thereby providing enough insights to translate research into appllication or science into discovery, be it personalized medicine, industrial bio-products, agri products or livestock systems. However, the question that we need to answer is how to make this future wellbeing system accessible, omnibus, and affordable for everybody? The answer is in integration of engineering, technology and science. Here there is an unanimous choice for high performance cloud computing – as, it enables and ignites affordable next generation genomics applications to reach the masses in the form of new therepies, drugs, better crops, sustainable enviroment, and proactive and preventive medicine.

About the Author

Asoke Talukder is an author, professor, and a practicing computational geneticist. He worked in tech-nology domains for companies like ICL, Fujitsu-ICIM, Microsoft, Oracle, Informix, Digital, Hewlett Packard, Sequoia, Northern Telecom, NEC, KredietBank, iGate, Cellnext, etc. He Internet enabled Microsoft PowerPoint, engineered the first 64-bit database (Informix), engineered Oracle Parallel Server for Fault Tolerant computer, and developed many killer technologies and products. He setup the first X.25 network in India for Department of Telecommunications (currently BSNL & MTNL), and the first Java Competency Centre in India. He engineered the Network Management System for Queen’s Award winning PDMX. He is recipient of many international awards for innovation and professional excellence including ICIM Professional Excellence Award, ICL Excellence Award, IBM Solutions Excellence Award, Simagine GSMWorld Award, All India Radio/Doordarshan Award etcetera. Asoke has been listed in “Who’s Who in the World”, “Who’s Who in Science and Engineering”, and “Outstanding Scientists of 21st Century”. He authored many research articles, book chapters, and textbooks. Asoke did M.Sc (Physics) with Bio-physics major and Ph.D (Computer Engineering). He was the DaimlerChrysler Chair Professor at IIIT-Bangalore, and currently Adjunct Faculty at Indian Institute of Information Technology & Management, Gwalior, Department of Computer Engineering, NITK Surathkal, and Department of Computer Science & Engineering, NIT Warangal. His current domain of expertise is in Computational Genomics and Statistical Bioinformatics. Along with teaching, he is founder of Geschickten Biosciences, a company in the domain of Computational Quantitative Biology focusing on Omic sciences analytics, GenomicsCloud, and Personalized/Holistic Medicine & Wellbeing.
 
About Geschickten Biosciences

To solve the challenges posed by the current Genomics technology such as Next Generation Sequencing, Geschickten has designed GenomicsCloud a novel cloud based software-as-a-services application for managing, analyzing and visualizing NGS data. A simple yet powerful software engine for NGS data analytics, Genomics Cloud will bring the power of a supercomputer accessible through a mobile device. One area that still remains as the concern in the cloud, is the data security and conformance to the regulatory requirements for transfer of genomics data across geographical boundaries. To mitigate this challenge, Geschickten has added an additional layer in the Cloud computing stack that will address the security requirements. This is termed as the cloud vendor layer. Cloud vendors will primarily be cloud resource aggregators, who will aggregate the services of many Original cloud providers’ and offer the services to the end biologist at an affordable price that will conform to the regulatory and taxation requirement of the end-user and the geography. The cloud vendor will ensure data transfer, data security, data management, and charging. This layer will also ensure some of the concerns of multi-tenancy in the Cloud.

Geschickten Biosciences (www.geschickten.com) is a niche scientific intelligence company from Bangalore, India. The first Computational Quantitative Biology company from India Geschickten offers a wide range of products and scientific services to independent researchers, sequencing centers and industry including but not limited to Biotechs, Pharmaceuticals, Chemical, FMCG, and Biofuel companies etc. As experts in in NGS data analytics and Microarray data analysis, Geschickten is combining engineering, technology and science to translate research into discovery. Geschickten offers innovative technological solutions for Agriculture research, Animal biology, Environmental science and in human genetics.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This