Boosting Biology with High Performance Clouds

By Asoke K. Talukder, Ph.D

April 11, 2011

There is a general interest to quantify biology to help growth of economy and affordable healthcare without causing much damage to the environment. This interest is both at the political level and at the scientific levels. From nutritional security to biofuel and beyond, all have roots in quantification of biology, we need to understand the theory behind all biological events that happen around us, whether within a cell due to a pathogen or in the environment due to the toxic industrial waste.

To manage this range of biological event, we need to understand the cause and effect equation of biological events. This is the reason, biology as a whole is embracing technology at an unprecedented rate. The main challenge in quantifying biology is that most of the biology problems are NP-hard; they need supercomputers to solve almost any problem. Therefore, biosciences research was always been the domain of computational elites who has access to large supercomputers.

Though many algorithms have been perfected in the recent past, the voluminous data from a NGS (Next Generation Sequencer) and increase in metadata have offset the benefits of these smarter algorithms. Newer and efficient algorithms combined with high performance cloud computing opens up the opportunity for smaller labs and under-privileged researchers and clinicians to engage in biology research and join the mainstream. The cloud also opens up the possibility for small clinics to offer personalized medicine who otherwise could not afford a supercomputer.

The new age genomics and the NGS technology in particular pushes the realm of compu-ting like never before. The challenges are immense as there is a need for parallel and efficient algorithms and tools to solve the data tsunami that the NGS machines offload. For example, the latest HiSeq 2000 from Illumina Inc, is expected to generate close to about 600 gigabase to 1 terabase per run. This data deluge coupled with the NP-hard nature of biological problems makes computer scientists to innovate newer and better techniques for transferring, managing, processing, decoding and analyzing the NGS data haze to unearth meaningful insights that can be applied to improve the quality of life.  

In the last few decades Web and network-delivered services have changed people’s lives. This technology has effectively “shrunk the world” and brought it into the pockets of individuals; it also helped the technology in a different way – it moved the center-stage of technology from giant technology companies to the technologists and technology consumers. Today an underprivileged entrepreneur somewhere in the world can innovate and open a shop in the Web and be successful. Likewise, HPC (High Performance Computing) accelerated by the cloud will transform the biotechnology, and life-sciences research, disease prognosis, and disease therapeutics. Unlike other domains.

In the life sciences almost everything is available in the open domain – most of the journals are open-access and free – even nicely catalogued in PubMed; almost all software are open-domain if not open source; even better is that, all experimental data are available for verification, download, and use. There are databases like NCBI (National Center for Biotechnology Information), Hapmap, SMD (Stanford Microarray Database), that archives data from genome to protein, microarray to microRNA. Anything anybody needs is available for free. The only component that was missing in this whole equation is the supercomputer. The cloud bridges this gap – a researcher can now do almost anything on the cloud. The cloud not only addresses the CPU power needs of a NP-hard problem, but also will addresses the storage requirements of hundreds of terabytes of storage a biology experiment might need. Though the communication technology is not ready yet to transfer such large volume of data online, the cloud vendors have perfected transfer of data offline.

High Performance Cloud Computing (HPCC) is poised to become the disruptive technology of the 21st century for lifesciences; cloud computing in particular will become an essential tool in the world for the biotechnology research for farmers, and clinicians alike. From high yield crops to industrial enzymes to high productive livestock and finally in Personalized medicine. HPCC solutions comprising of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) will play a pivotal role in translating lifescience to affordable applications. Cloud computing will be the highway to reduce the divide between computational elite and computational underprivileged, With cloud computing one can realize flexible, on-demand, and low-cost compute infrastructure whenever you want, wherever you want.

Another trend that will emerge along these lines very soon is the outsourcing model in biotechnology. Today the computational elites have monopolized the biotech research – they have large supercomputers with a large team of bioinformaticians. This will soon change – bioinformatics will graduate to computational quantitative biology with many smart researches offering their solutions in the clous mainly as an SaaS. Cloud computing is of particular benefit to small and medium-sized research centers, farmers, and clinicians who wish to outsource their data-center infrastructure, or large centers who wish to get peak load capacity without incurring the higher cost of ownership hrough larger data centers internally. In both instances, service consumers will use what they need on the Internet and pay only for what they use.

The next generation lifesciences, biotechnology, and healthcare applications will be a con-glomeration of a gamut of tools including but not limited to Systems biology, High Performance cloud computing systems, computer algorithms, mathematics, statistics, biological networks, molecular interaction pathways, Protein-enzyme-simulations, etc. Each of these techniques have a pivotal role to play in deciphering the complex human – environment system and thereby providing enough insights to translate research into appllication or science into discovery, be it personalized medicine, industrial bio-products, agri products or livestock systems. However, the question that we need to answer is how to make this future wellbeing system accessible, omnibus, and affordable for everybody? The answer is in integration of engineering, technology and science. Here there is an unanimous choice for high performance cloud computing – as, it enables and ignites affordable next generation genomics applications to reach the masses in the form of new therepies, drugs, better crops, sustainable enviroment, and proactive and preventive medicine.

About the Author

Asoke Talukder is an author, professor, and a practicing computational geneticist. He worked in tech-nology domains for companies like ICL, Fujitsu-ICIM, Microsoft, Oracle, Informix, Digital, Hewlett Packard, Sequoia, Northern Telecom, NEC, KredietBank, iGate, Cellnext, etc. He Internet enabled Microsoft PowerPoint, engineered the first 64-bit database (Informix), engineered Oracle Parallel Server for Fault Tolerant computer, and developed many killer technologies and products. He setup the first X.25 network in India for Department of Telecommunications (currently BSNL & MTNL), and the first Java Competency Centre in India. He engineered the Network Management System for Queen’s Award winning PDMX. He is recipient of many international awards for innovation and professional excellence including ICIM Professional Excellence Award, ICL Excellence Award, IBM Solutions Excellence Award, Simagine GSMWorld Award, All India Radio/Doordarshan Award etcetera. Asoke has been listed in “Who’s Who in the World”, “Who’s Who in Science and Engineering”, and “Outstanding Scientists of 21st Century”. He authored many research articles, book chapters, and textbooks. Asoke did M.Sc (Physics) with Bio-physics major and Ph.D (Computer Engineering). He was the DaimlerChrysler Chair Professor at IIIT-Bangalore, and currently Adjunct Faculty at Indian Institute of Information Technology & Management, Gwalior, Department of Computer Engineering, NITK Surathkal, and Department of Computer Science & Engineering, NIT Warangal. His current domain of expertise is in Computational Genomics and Statistical Bioinformatics. Along with teaching, he is founder of Geschickten Biosciences, a company in the domain of Computational Quantitative Biology focusing on Omic sciences analytics, GenomicsCloud, and Personalized/Holistic Medicine & Wellbeing.
 
About Geschickten Biosciences

To solve the challenges posed by the current Genomics technology such as Next Generation Sequencing, Geschickten has designed GenomicsCloud a novel cloud based software-as-a-services application for managing, analyzing and visualizing NGS data. A simple yet powerful software engine for NGS data analytics, Genomics Cloud will bring the power of a supercomputer accessible through a mobile device. One area that still remains as the concern in the cloud, is the data security and conformance to the regulatory requirements for transfer of genomics data across geographical boundaries. To mitigate this challenge, Geschickten has added an additional layer in the Cloud computing stack that will address the security requirements. This is termed as the cloud vendor layer. Cloud vendors will primarily be cloud resource aggregators, who will aggregate the services of many Original cloud providers’ and offer the services to the end biologist at an affordable price that will conform to the regulatory and taxation requirement of the end-user and the geography. The cloud vendor will ensure data transfer, data security, data management, and charging. This layer will also ensure some of the concerns of multi-tenancy in the Cloud.

Geschickten Biosciences (www.geschickten.com) is a niche scientific intelligence company from Bangalore, India. The first Computational Quantitative Biology company from India Geschickten offers a wide range of products and scientific services to independent researchers, sequencing centers and industry including but not limited to Biotechs, Pharmaceuticals, Chemical, FMCG, and Biofuel companies etc. As experts in in NGS data analytics and Microarray data analysis, Geschickten is combining engineering, technology and science to translate research into discovery. Geschickten offers innovative technological solutions for Agriculture research, Animal biology, Environmental science and in human genetics.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This