Compilers and More: Exascale Programming Requirements

By Michael Wolfe

April 14, 2011

Programming at Exascale, Part 3

In an earlier column, I discussed six levels of parallelism that we’ll have in exascale systems: node, socket, core, vector, instruction, and pipeline levels, and said that to reach exascale performance, we need to take advantage of all these levels, since the final performance is the product of them all. In my most recent column, I argued that to be successful at that, we need to effectively expose, express, and exploit parallelism: expose it in the application and algorithms, express it in the language and program, and exploit it in the generated code and at runtime. Exposing parallelism is mostly a creative task, and thus must be done by humans. Expressing parallelism is where we mostly get sidetracked: what language, what kind of parallelism, how will it work with legacy software? Since parallel programming is all about performance, we need to focus on those aspects that would hinder performance, specifically locality and synchronization. Finally, successfully exploiting parallelism means mapping the parallelism exposed in the application and expressed in the program to the parallelism in the hardware. I discussed five dimensions of flexibility: scalability, dynamic parallelism, composability, load balancing, and productivity. In this column, the last of a three-part series, I’ll give my views on what programming at the exascale level is likely to require, and how we can get there from where we are today. My belief is that it will take some work, but it’s not a wholesale rewrite of 50 years of high performance expertise.

Exascale Programming: What It Won’t Be

What are the characteristics of a programming strategy for the coming exascale computers? It’s easier to say what it isn’t.

It’s not a library. Encapsulation is a well-known, often used, and important technique to building large systems. By design, encapsulation hides information about the implementation of the encapsulated object (data structure, algorithm, service) from the user of that object. Encapsulation will continue to be important for many reasons. But information hiding obscures not just the algorithm and data structures, but performance aspects, such as what kinds of parallelism are used within the encapsulated object and how that interacts with parallelism of the user of that object, or low level information such as how the data is laid out and how that affects locality in an algorithm. In particular, opaque low-level libraries (e.g., MPI for data distribution and message passing) hide too much information from the system, preventing any system-level tuning. That’s not to say a useful system won’t be built using MPI as the transport layer, but MPI or POSIX threads or other low-level libraries should not be directly used in the application.

It’s not a C++ class hierarchy or template library. Here, I’m again going out on a limb; there have been and continue to be many sets of useful C++ class libraries intended to raise the level of application programming. Take the C++ standard template library for vector; the intent of such a template is to allow a user to define a data structure and get the benefit of reusing any routines in the STL or from elsewhere built on the vector template. But you don’t really understand the performance of the vector datatype; that information hiding means you don’t know if accesses to vector V; are efficient or not. Compare that to an array access in a loop, with the corresponding vector access V[i]; the array access can often be optimized down to two instructions: load, and increment the pointer to the next address. Moreover, two-dimensional objects using the vector type (vector>) become even more opaque.

Or take Thrust, an STL-like implementation providing a high-level interface to GPU programming, built on CUDA. You can define two vectors in Thrust as

   using namespace thrust;    device_vector x(1000);    device_vector y(1000); 

Multiplying two such vectors and then accumulating the result can be done as:

   transform( x.begin(), x.end(), y.begin(), z.begin(), multiplies() );    r = reduce( z.begin(), z.end(), 0, plus() );

This is certainly easier (more productive?) to write than the equivalent CUDA C (or CUDA Fortran) code, but it’s still far easier to write the Fortran:

   r = sum( x(:) * y(:) ) 

Moreover, when the constructs are part of the language, the compiler can compose and optimize them together. As mentioned in my last column, in the Fortran case, the compiler can generate code for the multiply then accumulate the result without requiring an intermediate vector result. With the C++ library, the code for the transform method doesn’t know that its result will immediately be accumulated, so the method or (as in this case) the user has to provide a result vector. The only tool the compiler has to optimize class library calls is inlining, and it’s simply not enough to recover the performance lost by the abstraction. There have been some efforts to use run-time code generation, building the expression tree from the method calls, then generating the optimized (and composed) code from the whole expression tree; this was the technology behind Rapidmind, which is now being used in Intel’s Array Building Blocks (ArBB). Such mechanisms are promising, but what we really want is a way to define new data types and describe operations to the compiler in a way that the compiler can reason about them, compose them, reorder them, and so on; currently, the definition is basically in terms of C code, which is not expressive enough. There’s a research project just waiting to happen.

It’s not a domain-specific language. I really like the idea of DSLs, of embedding domain knowledge in the language and using that knowledge when generating and optimizing the code. However, languages, real languages, are big project; DSLs are (by definition) specialized, and hence don’t have a large enough user community to support production, maintenance and continuing development of the language and all the tools needed to support a language. We can’t expect language implementors (like PGI) to take on the development and continuing support of a plethora of languages, any more than we should expect user communities to each design, implement, and then continue to update, enhance, tune and optimize the language implementation with each new processor release from Intel. A possible alternative approach would be to implement a language to support DSLs, supported by a language vendor, including interfacing to debuggers, performance tools, editors, and so on. The various user communities would then be somewhat insulated from the details of a performance-oriented solution, and the vendor would avoid falling into the many-languages trap. There’s another potential research project.

It’s not OpenCL. OpenCL may be a necessary step towards heterogeneous programming, but it’s not the final answer. It’s very low level, “close to the metal”, as even the language designers admit. As with MPI, we may be able to build on OpenCL, but it’s not sufficient.

It’s not a whole new language. New languages have a high barrier to entry; most programmers avoid adopting a new language for fear that it will die, unless the language meets some need better than anything else, or until it has survived along enough to ameliorate the fear. But I think a new language is not called for here. We may benefit from some new features in existing languages, and maybe new ways to make programs in those languages, but most new languages really don’t add semantically much beyond managed memory.

It’s not easy. I’ve argued before that parallel programming is not easy, won’t be, and can’t be made easy. The idea of making parallel programming easy is silly.

It’s not just parallelism. Parallelism is an important aspect, perhaps the dominant aspect, but the key isn’t parallelism, it’s performance. A bad parallel algorithm doesn’t run fast just because it’s parallel. A bad implementation of a good parallel algorithm will also be slow. It’s quite easy to write slow parallel programs; this was the key failure (my opinion) of High Performance Fortran. So our programming mechanism will focus on performance, where parallelism is one aspect (locality and synchronization being two more).

Exascale Programming: What It Is

So what do we want and need when programming at exascale from whatever programming environment we get? Here is my bucket list:

  • It supports all levels of parallelism, from node parallelism down to vector and pipeline parallelism, effectively. Support is a big word here; it has to allow for a programming model that an application developer can use to think about what kinds of parallelism will map well at different levels, that a programmer can use to write a program that can be mapped well at different levels, and that the implementation (compiler and runtime) can use to exploit the parallelism. We have this today, clumsily, with different mechanisms for different levels; a bit more integration would take us a long way.
  • It can map an expression of program parallelism (a parallel loop, say) to different levels of hardware parallelism (across nodes, or to a vector unit) depending on the target. This will make it scalable up and down, from exascale to laptop. There was a great deal of work on the SISAL language to efficiently scalarize an implicitly parallel language, which turned out to be largely the dual of the parallelizing compiler problem. Such work will be part of this parallelism remapping. Remapping node-level parallelism may require changing the data distribution per node; today, this is done at the application level. We should be able to specify what parameters of the program depend on which aspects of the target machine, so the system can do the remapping.
  • It supports the programmer with lots of feedback. Vectorizing compilers have been very successful for over 35 years in delivering good vector performance from sequential loops because the compilers tell the programmer when they are successful, and more importantly, when and why they fail. This is essentially performance feedback. We are in the business of developing high performance applications, and we should be notified when we are using constructs that will restrict our performance. Static feedback and useful dynamic feedback will both be critical.
  • It supports dynamic parallelism, creating parallel tasks and threads when needed. There are many successful and useful implementations of dynamic parallelism, some limited (OpenMP) and some more aggressive (Cilk). Dynamic parallelism is somewhat at odds with locality and synchronization optimization. Using a work-stealing scheduler, an idle worker will steal a work item from the queue of another worker. However, that work item may have been placed on that worker’s queue because that’s where its data is, or because that work item depends on some other work item also assigned to that worker. However, without constructs for dynamic parallelism, we end up micromanaging thread-level parallelism in the constructs we do have.
  • It efficiently composes abstract operations, as I discussed in my previous column; whether these are native to the language, or abstract operations defined by a user or in a library, the implementation must be able to combine them naturally. Perhaps, when we define abstract operations, we need a mechanism to describe how they can compose with others. Many now-standard compiler optimizations fall into composition, such as loop vectorization and loop fusion. We need more investigation about what composing abstract operations means, beyond simply inlining.
  • It is self-balancing and self-tuning. This involves runtime introspection and behavior modification, and means the parameters or data and work distribution must be exposed to the system in order to be modified. Examples include changing the tile sizes for tiled nested loops when optimized for cache locality, or changing the data distributions when the work load is not uniform across the domain. Such behavior modification has been demonstrated in many systems, though not many integrated with the programming language and its implementation.
  • It must be resilient. The big systems are, many believe, going to be in partial failure mode much of the time. This presents challenges for the system manager and programmer. Expecting the entire system to be working, taking checkpoints and restoring from a failure point will not be efficient if failures are the norm. Some of the necessary features must be supported by the hardware (getting data off a node with a failed processor; early failure detection). Other features could be supported by some of the runtime features we develop for other reasons (redistributing data to working nodes; reserving some nodes to serve as online replacements). Such a system can survive and continue beyond many failures.

Most of these points (except for the last) have been researched and implemented in some form already, and could be reproduced with current technology (and enough motivation) in Fortran, C++, or whatever language you want. We have to extend the programming model to expose performance aspects and perhaps resilience aspects, so the user can guide how the system (compiler plus runtime) implements the program. We often get focused on either abstracting away so much that we lose sight of performance (as happened with High Performance Fortran), or we get so tied up with performance that we focus too much on details of each target machine (as happens today with OpenCL and CUDA). We need to let the programmer do the creative parts, and let the system do the mechanical work.

Final Note: This series of columns is an expanded form of the material from the PGI Exhibitor Forum presentation at SC10 in New Orleans. If you were there, you can tell me whether it’s more informative (or entertaining) in written or verbal form.

About the Author

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Li Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, superco Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This