TACC Steps Up to the MIC

By Michael Feldman

April 21, 2011

As Intel prepares to roll out its Many Integrated Core (MIC) technology for commercial production in 2012, it has managed to entice a major US supercomputing center to start porting some of its science codes to the new architecture. The Texas Advanced Computing Center (TACC) announced it has teamed up with the chipmaker and begun porting a handful of research applications to the pre-production “Knights Ferry” MIC processor. Later this year, TACC will build a cluster of such chips for further development, with the intent to deploy a system based on the commercial “Knights Corner” MIC processor when Intel starts production.

MIC represents Intel’s entry into the HPC processor accelerator sweepstakes, as the company attempts to perform an end-run around GPU computing. Mainly thanks to NVIDIA, over the last few years GPU computing, aka GPGPU, has become a mainstream HPC solution across workstations, clusters and supercomputers. They rely on specialized programming environments, like CUDA and OpenCL, to develop software on those platforms.

As suggested by its name, MIC is essentially an x86 processor, with more cores (but simpler ones) than a standard x86 CPU, an extra-wide SIMD unit for heavy duty vector math, and four-way SMT threading. As such, it’s meant to speed up codes that can exploit much higher levels of parallelization than can be had on standard x86 parts.

Knights Ferry is Intel’s development implementation spun out of the chipmaker’s abandoned Larrabee processor effort for visual computing. The chip sports 32 IA cores and runs at 1.2 GHz. Since each core supports a four-way SMP (as opposed to the two-way HyperThreading on Xeons), each chip can manage up to 128 threads in parallel. Memory-wise, Knights Ferry has 8 MB of cache and 1 to 2 GB of GPU-flavored GDDR5 DRAM. Like its current GPGPU competition, Knights Ferry is meant to be hooked up to a PCIe bus, acting as a co-processor to a standard x86 CPU.

Knights Corner will be Intel’s first commercial version of MIC, will have upwards of 50 cores per chip, and will be implemented on the company’s 22nm process technology. Although no official date has been announced for the commercial launch, according to a presentation by Intel research engineer Pradeep Dubey at the recent 2011 Open Fabrics International Workshop in Monterey, Knights Corner is slated for release sometime in the second half of 2012.

At this point, TACC is using the MIC software development kit (SDK), employing a Knights Ferry chip attached to a single machine. According to TACC’s deputy director Dan Stanzione, they are planning to build a “relatively small” cluster of Knights Ferry-equipped nodes to test codes in a distributed computing environment before the end of the year.

On Thursday, I spoke with Stanzione, who was very upbeat about the new architecture, noting that the x86 compatibility is a big deal for TeraGrid researchers. In aggregate, they have a massive investment in their science codes, numbering in the hundreds.

“This is a way to get a dramatically better power per operation without having to throw out everything we know about software,” he said, adding, “I’m really excited about this as a path forward. I think it has the potential to be a real game-changer.”

One nice feature of MIC programming is that it inherently supports OpenMP, a popular parallel computing model for shared memory environments. And since Intel’s HPC tool chain — Parallel Studio and Cluster Studio — has been extended to the MIC architecture, the programmer can even stay in the same development environment for both its Xeon and MIC work — which, of course, Intel would like very much.

The result is that OpenMP code written for four-core or six-core x86 CPUs, like some of the ones TACC has started porting, should move rather easily to a 32-core MIC co-processor. “Getting the codes to run the first time is pretty simple,” Stanzione said, adding that when they move to the MIC cluster, they’ll have to figure out how to layer an MPI distributed memory model on top of that.

According to him, they’ve already ported a bunch of benchmark codes and have started with the applications. One is a bio-modeling app, which attempts to detect epistatic interactions (how genes modify each other to express a phenotype) across a corn genome. The code was thousands of lines long, but because it was parallelized via OpenMP, it moved to MIC with minimal restructuring.

Although TACC has committed resources to the MIC effort, Stanzione said they are evaluating hardware and software accelerator approaches across the spectrum, most notably using CUDA and OpenCL on GPUs. (TACC’s Longhorn supercomputer is currently the center’s largest GPU platform, sporting 512 NVIDIA Tesla processors.) Although it’s too early to compare performance across specific applications, it’s already apparent that porting is much simpler with Intel’s offering.

“Moving a code to MIC might involve sitting down and adding a couple of lines of directives that takes a few minutes,” explained Stanzione. “Moving a code to a GPU is a project.”

Although measuring performance is still a work in progress, the early results on scaling appear to be encouraging. According to Stanzione, doubling the number of MIC cores has roughly doubled the performance on some of the initial codes. They expect to be able to say a lot more about performance when they get the Knights Corner commercial parts.

From Intel’s point of view, getting TACC to sign on to MIC development is a big boost for its manycore effort. Assuming the porting goes as planned, the chipmaker will be able to point to a nice set of proof points based on real-world HPC applications. According to John Hengeveld, Intel’s director of technical compute marketing for its datacenter group, they’ll be able to incorporate TACC’s experience into the upcoming delivery of Knights Corner parts and software. “Having a partner that is helping us work on issues of scalability and optimization is really quite valuable,” he explained.

Although TACC is the first big HPC organization with a committed roadmap for MIC development, they won’t be the last. Intel currently has about 100 MIC developers scattered around, and according to Hengeveld, they’ll be announcing some bigger collaborations in the months ahead. And as we get closer to MIC’s commercial release, the news surrounding the new architecture should start to pick up. “We’ll be talking a lot more about this at ISC,” promised Hengeveld.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire