The Opportunity for Predictive Analytics in Finance

By Sue Korn

April 21, 2011

It is often said that managing enterprise risk and micro risk is about finding the needle in the haystack. Predictive analytics uses powerful computers with large memory and storage to eliminate 90 percent of the hay, those “easy” decisions that a computer can handle effortlessly. The modeling systems then score the remaining 10 percent, prioritizing the activities of the human analysts and investigators to do what they do best, which is to make the optimal decision.

That entails such things as finding the best risk/reward trade-offs for new customers, avoiding fraudulent insurance claims, identifying fraud or abuse in government programs, stopping questionable transactions, and optimally pricing assets against the degree of risk.

Predictive analytics is the discipline that uses computational techniques to search for ways to optimize business decisions. Applications in financial services include front-end customer acquisition analytics, offer selection, relationship management, pricing optimization, risk management, fraud management, and actuarial analysis for insurance.

High Performance Business Computing in Financial Markets

Financial services is the second-largest commercial high performance computing (HPC) vertical market, second only to manufacturing. It is also one of the fastest growing, and as a result, it is a critical part of our High Performance Business Computing (HPBC) methodology. Within financial services, high-frequency trading is the most well-known application, but there are several other areas where HPC is in use.

Intersect360 Research tracks a number of broad application areas as part of the financial services vertical. These include trading, both high-frequency trading and algorithmic trading; risk management, at the enterprise, portfolio or customer level, as well as actuarial analysis for insurance; pricing and valuation of individual securities, derivatives, and compound derivatives; and business and economic analytics, including modeling, simulation, and decision support.

Financial services companies take many forms, from large, multinational, multiline organizations to regional boutiques. An individual company might run all or none of these application types. (You cannot guarantee that a given bank runs HPC risk management applications any more than you can guarantee that any manufacturer runs HPC computer-aided engineering simulations.) But among these application types, analytics, particularly predictive analytics, is important for its potential to be leveraged in multiple ways.

There are several different levels of predictive analytics techniques used, with increasing levels of sophistication. At the simplest level, traditional techniques such as regression, linear modeling, rules-based algorithms and decision trees are used. More complex techniques such as neural networks and machine learning are at the next level. Newer techniques include text analysis (where, for example, notes entered by a service representative after a customer calls in can be mined or sentiment can be coaxed out of tweets) and social network analysis (looking for patterns in the relationship between a customer and provider, in context of all other customers and providers).

These individual techniques can be combined into compound engines such as net lift (or uplift) modeling, where two or more scenarios are analyzed simultaneously to trace all possible outcomes and choose the right treatment (or lack of treatment) for a particular situation. There’s also ensemble modeling, in which a suite of models are run and the final response comes from a weighting of the individual models’ results, and where the model-weighting can also be refined based on the situation.

We expect that analytics will be a growing market for what we call High Performance Business Computing (HPBC), particularly in financial services and related disciplines. There are three legs to the stool supporting this belief. First, there is an explosion of data becoming available, both internal and external, to organizations. Second, there are methodologies to analyze and make sense of this vast amount of data are being developed and improved every day. The third leg of the stool is the availability of cost-effective and accessible systems (in terms of computational speed, data storage, memory) to be able to do something useful with it. Put these three legs together and you get a large potential opportunity for HPBC.

The systems required to perform predictive analytics range from Excel using a SAS dataset on a laptop computer, all the way to custom-designed, self-tuning engines running on large clusters or in-database, and everything in between. On one extreme, predictive analytics is clearly using high performance computing. On the other extreme, it clearly is not. Where to draw that line right now is less important than the conclusion that more and more companies are moving towards these sophisticated techniques.

Industry leaders have their own internal teams, and this capability provides a differentiating competitive advantage. Those who have not made the switch will be evaluating these techniques and systems with more interest as more and more success stories are written by those using predictive analytics.

Companies moving to predictive analytics will get there in one of two ways, either building teams internally or by hiring third-party providers to develop their systems for them. These third parties can use the principal company’s systems, or can run the analytics on behalf of the principals, sending back scores and metrics to be loaded onto the principal company’s internal database.

Why Predictive Analytics

Financial institutions do not sell widgets, take in revenue on those sales and pay a cost of making the good that they sold. While manufacturing companies can build a better product (better quality at a better price) using digital manufacturing, financial institutions’ assets are monetary in nature. In contrast to a manufacturing organization, financial institutions make their money on the spread, or difference, between what they earn on their financial assets and what they pay for their liabilities. This spread also has to be enough to cover their operating expenses, which generally include credit losses, fraud losses and fraud management.

Assets, in this sense, are insurance policies that provide premium income. They can be loans that provide origination fees, finance charges and service fees. They can be investment portfolios that provide management fees or trading revenue. Liabilities could be deposits or debt where the institution is paying a rate of interest for the use of the depositor or investor’s money.

A financial institution maximizes this profit calculation through two mechanisms: risk management and pricing optimization. Risk management encompasses the institution’s initial decision to originate a loan or insurance policy, their ongoing behavior analysis (e.g., fraud, delinquency, late payment, increased claims) and exposure management, like not renewing a policy or implementing line reductions. On the other side is pricing optimization, which includes the initial pricing decision, whether to do special offers or provide discounts to entice profitable customers to stay or deepen their relationship, and the implement ion of the penalty pricing (e.g., if the customer goes over their limit or pays late).

The analytically elite companies have these types of analytics as part of their DNA. They are constantly loading new transaction or behavior data, evaluating assumptions, calibrating models, rebalancing among methodologies, reweighting results in ensemble infrastructures. “Constantly” used to mean monthly not too long ago. Increasingly it means weekly, daily or even as transactions are initiated.

Predictive Analytics Beyond Banking

Although financial services institutions are among the most advanced users, the potential benefits are available to many business areas. Already, predictive analytics are also making a difference in non-financial markets. For example in the government arena, it’s being used to reduce waste, identify fraud in government programs, and uncover tax fraud. In health care, it’s being employed for cost management, system fraud, and more accurate or quicker diagnoses. Finally in telecom, predictive analytics is being used to minimize customer base churn.

On that last point, basically any company has groups of customers it would like to manage, both in terms of customer relationship management (CRM) issues like customer acquisition and turnover, as well as tailoring product portfolios and pricing to different categories of customers.

Because of its broad potential applicability, predictive analytics should continue to be a significant growth driver for HPBC markets. The vast amount of data being collected by companies virtually guarantees that there are some valuable nuggets of information waiting to be brought to light that can have a material impact on profitability. Finding these needles in the haystack is a challenge, but predictive analytics provides a way for companies to take advantage of them.

About the Author

Sue Korn is a senior analyst at Intersect360 Research specializing in High Performance Business Computing (HPBC) applications, and a 20-year veteran of the financial services industry. In her role at Intersect360 Research, Korn spearheads the company’s analysis of the drivers and barriers of HPC adoption in business environments and the growing role of HPBC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This