The Opportunity for Predictive Analytics in Finance

By Sue Korn

April 21, 2011

It is often said that managing enterprise risk and micro risk is about finding the needle in the haystack. Predictive analytics uses powerful computers with large memory and storage to eliminate 90 percent of the hay, those “easy” decisions that a computer can handle effortlessly. The modeling systems then score the remaining 10 percent, prioritizing the activities of the human analysts and investigators to do what they do best, which is to make the optimal decision.

That entails such things as finding the best risk/reward trade-offs for new customers, avoiding fraudulent insurance claims, identifying fraud or abuse in government programs, stopping questionable transactions, and optimally pricing assets against the degree of risk.

Predictive analytics is the discipline that uses computational techniques to search for ways to optimize business decisions. Applications in financial services include front-end customer acquisition analytics, offer selection, relationship management, pricing optimization, risk management, fraud management, and actuarial analysis for insurance.

High Performance Business Computing in Financial Markets

Financial services is the second-largest commercial high performance computing (HPC) vertical market, second only to manufacturing. It is also one of the fastest growing, and as a result, it is a critical part of our High Performance Business Computing (HPBC) methodology. Within financial services, high-frequency trading is the most well-known application, but there are several other areas where HPC is in use.

Intersect360 Research tracks a number of broad application areas as part of the financial services vertical. These include trading, both high-frequency trading and algorithmic trading; risk management, at the enterprise, portfolio or customer level, as well as actuarial analysis for insurance; pricing and valuation of individual securities, derivatives, and compound derivatives; and business and economic analytics, including modeling, simulation, and decision support.

Financial services companies take many forms, from large, multinational, multiline organizations to regional boutiques. An individual company might run all or none of these application types. (You cannot guarantee that a given bank runs HPC risk management applications any more than you can guarantee that any manufacturer runs HPC computer-aided engineering simulations.) But among these application types, analytics, particularly predictive analytics, is important for its potential to be leveraged in multiple ways.

There are several different levels of predictive analytics techniques used, with increasing levels of sophistication. At the simplest level, traditional techniques such as regression, linear modeling, rules-based algorithms and decision trees are used. More complex techniques such as neural networks and machine learning are at the next level. Newer techniques include text analysis (where, for example, notes entered by a service representative after a customer calls in can be mined or sentiment can be coaxed out of tweets) and social network analysis (looking for patterns in the relationship between a customer and provider, in context of all other customers and providers).

These individual techniques can be combined into compound engines such as net lift (or uplift) modeling, where two or more scenarios are analyzed simultaneously to trace all possible outcomes and choose the right treatment (or lack of treatment) for a particular situation. There’s also ensemble modeling, in which a suite of models are run and the final response comes from a weighting of the individual models’ results, and where the model-weighting can also be refined based on the situation.

We expect that analytics will be a growing market for what we call High Performance Business Computing (HPBC), particularly in financial services and related disciplines. There are three legs to the stool supporting this belief. First, there is an explosion of data becoming available, both internal and external, to organizations. Second, there are methodologies to analyze and make sense of this vast amount of data are being developed and improved every day. The third leg of the stool is the availability of cost-effective and accessible systems (in terms of computational speed, data storage, memory) to be able to do something useful with it. Put these three legs together and you get a large potential opportunity for HPBC.

The systems required to perform predictive analytics range from Excel using a SAS dataset on a laptop computer, all the way to custom-designed, self-tuning engines running on large clusters or in-database, and everything in between. On one extreme, predictive analytics is clearly using high performance computing. On the other extreme, it clearly is not. Where to draw that line right now is less important than the conclusion that more and more companies are moving towards these sophisticated techniques.

Industry leaders have their own internal teams, and this capability provides a differentiating competitive advantage. Those who have not made the switch will be evaluating these techniques and systems with more interest as more and more success stories are written by those using predictive analytics.

Companies moving to predictive analytics will get there in one of two ways, either building teams internally or by hiring third-party providers to develop their systems for them. These third parties can use the principal company’s systems, or can run the analytics on behalf of the principals, sending back scores and metrics to be loaded onto the principal company’s internal database.

Why Predictive Analytics

Financial institutions do not sell widgets, take in revenue on those sales and pay a cost of making the good that they sold. While manufacturing companies can build a better product (better quality at a better price) using digital manufacturing, financial institutions’ assets are monetary in nature. In contrast to a manufacturing organization, financial institutions make their money on the spread, or difference, between what they earn on their financial assets and what they pay for their liabilities. This spread also has to be enough to cover their operating expenses, which generally include credit losses, fraud losses and fraud management.

Assets, in this sense, are insurance policies that provide premium income. They can be loans that provide origination fees, finance charges and service fees. They can be investment portfolios that provide management fees or trading revenue. Liabilities could be deposits or debt where the institution is paying a rate of interest for the use of the depositor or investor’s money.

A financial institution maximizes this profit calculation through two mechanisms: risk management and pricing optimization. Risk management encompasses the institution’s initial decision to originate a loan or insurance policy, their ongoing behavior analysis (e.g., fraud, delinquency, late payment, increased claims) and exposure management, like not renewing a policy or implementing line reductions. On the other side is pricing optimization, which includes the initial pricing decision, whether to do special offers or provide discounts to entice profitable customers to stay or deepen their relationship, and the implement ion of the penalty pricing (e.g., if the customer goes over their limit or pays late).

The analytically elite companies have these types of analytics as part of their DNA. They are constantly loading new transaction or behavior data, evaluating assumptions, calibrating models, rebalancing among methodologies, reweighting results in ensemble infrastructures. “Constantly” used to mean monthly not too long ago. Increasingly it means weekly, daily or even as transactions are initiated.

Predictive Analytics Beyond Banking

Although financial services institutions are among the most advanced users, the potential benefits are available to many business areas. Already, predictive analytics are also making a difference in non-financial markets. For example in the government arena, it’s being used to reduce waste, identify fraud in government programs, and uncover tax fraud. In health care, it’s being employed for cost management, system fraud, and more accurate or quicker diagnoses. Finally in telecom, predictive analytics is being used to minimize customer base churn.

On that last point, basically any company has groups of customers it would like to manage, both in terms of customer relationship management (CRM) issues like customer acquisition and turnover, as well as tailoring product portfolios and pricing to different categories of customers.

Because of its broad potential applicability, predictive analytics should continue to be a significant growth driver for HPBC markets. The vast amount of data being collected by companies virtually guarantees that there are some valuable nuggets of information waiting to be brought to light that can have a material impact on profitability. Finding these needles in the haystack is a challenge, but predictive analytics provides a way for companies to take advantage of them.

About the Author

Sue Korn is a senior analyst at Intersect360 Research specializing in High Performance Business Computing (HPBC) applications, and a 20-year veteran of the financial services industry. In her role at Intersect360 Research, Korn spearheads the company’s analysis of the drivers and barriers of HPC adoption in business environments and the growing role of HPBC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This