The Opportunity for Predictive Analytics in Finance

By Sue Korn

April 21, 2011

It is often said that managing enterprise risk and micro risk is about finding the needle in the haystack. Predictive analytics uses powerful computers with large memory and storage to eliminate 90 percent of the hay, those “easy” decisions that a computer can handle effortlessly. The modeling systems then score the remaining 10 percent, prioritizing the activities of the human analysts and investigators to do what they do best, which is to make the optimal decision.

That entails such things as finding the best risk/reward trade-offs for new customers, avoiding fraudulent insurance claims, identifying fraud or abuse in government programs, stopping questionable transactions, and optimally pricing assets against the degree of risk.

Predictive analytics is the discipline that uses computational techniques to search for ways to optimize business decisions. Applications in financial services include front-end customer acquisition analytics, offer selection, relationship management, pricing optimization, risk management, fraud management, and actuarial analysis for insurance.

High Performance Business Computing in Financial Markets

Financial services is the second-largest commercial high performance computing (HPC) vertical market, second only to manufacturing. It is also one of the fastest growing, and as a result, it is a critical part of our High Performance Business Computing (HPBC) methodology. Within financial services, high-frequency trading is the most well-known application, but there are several other areas where HPC is in use.

Intersect360 Research tracks a number of broad application areas as part of the financial services vertical. These include trading, both high-frequency trading and algorithmic trading; risk management, at the enterprise, portfolio or customer level, as well as actuarial analysis for insurance; pricing and valuation of individual securities, derivatives, and compound derivatives; and business and economic analytics, including modeling, simulation, and decision support.

Financial services companies take many forms, from large, multinational, multiline organizations to regional boutiques. An individual company might run all or none of these application types. (You cannot guarantee that a given bank runs HPC risk management applications any more than you can guarantee that any manufacturer runs HPC computer-aided engineering simulations.) But among these application types, analytics, particularly predictive analytics, is important for its potential to be leveraged in multiple ways.

There are several different levels of predictive analytics techniques used, with increasing levels of sophistication. At the simplest level, traditional techniques such as regression, linear modeling, rules-based algorithms and decision trees are used. More complex techniques such as neural networks and machine learning are at the next level. Newer techniques include text analysis (where, for example, notes entered by a service representative after a customer calls in can be mined or sentiment can be coaxed out of tweets) and social network analysis (looking for patterns in the relationship between a customer and provider, in context of all other customers and providers).

These individual techniques can be combined into compound engines such as net lift (or uplift) modeling, where two or more scenarios are analyzed simultaneously to trace all possible outcomes and choose the right treatment (or lack of treatment) for a particular situation. There’s also ensemble modeling, in which a suite of models are run and the final response comes from a weighting of the individual models’ results, and where the model-weighting can also be refined based on the situation.

We expect that analytics will be a growing market for what we call High Performance Business Computing (HPBC), particularly in financial services and related disciplines. There are three legs to the stool supporting this belief. First, there is an explosion of data becoming available, both internal and external, to organizations. Second, there are methodologies to analyze and make sense of this vast amount of data are being developed and improved every day. The third leg of the stool is the availability of cost-effective and accessible systems (in terms of computational speed, data storage, memory) to be able to do something useful with it. Put these three legs together and you get a large potential opportunity for HPBC.

The systems required to perform predictive analytics range from Excel using a SAS dataset on a laptop computer, all the way to custom-designed, self-tuning engines running on large clusters or in-database, and everything in between. On one extreme, predictive analytics is clearly using high performance computing. On the other extreme, it clearly is not. Where to draw that line right now is less important than the conclusion that more and more companies are moving towards these sophisticated techniques.

Industry leaders have their own internal teams, and this capability provides a differentiating competitive advantage. Those who have not made the switch will be evaluating these techniques and systems with more interest as more and more success stories are written by those using predictive analytics.

Companies moving to predictive analytics will get there in one of two ways, either building teams internally or by hiring third-party providers to develop their systems for them. These third parties can use the principal company’s systems, or can run the analytics on behalf of the principals, sending back scores and metrics to be loaded onto the principal company’s internal database.

Why Predictive Analytics

Financial institutions do not sell widgets, take in revenue on those sales and pay a cost of making the good that they sold. While manufacturing companies can build a better product (better quality at a better price) using digital manufacturing, financial institutions’ assets are monetary in nature. In contrast to a manufacturing organization, financial institutions make their money on the spread, or difference, between what they earn on their financial assets and what they pay for their liabilities. This spread also has to be enough to cover their operating expenses, which generally include credit losses, fraud losses and fraud management.

Assets, in this sense, are insurance policies that provide premium income. They can be loans that provide origination fees, finance charges and service fees. They can be investment portfolios that provide management fees or trading revenue. Liabilities could be deposits or debt where the institution is paying a rate of interest for the use of the depositor or investor’s money.

A financial institution maximizes this profit calculation through two mechanisms: risk management and pricing optimization. Risk management encompasses the institution’s initial decision to originate a loan or insurance policy, their ongoing behavior analysis (e.g., fraud, delinquency, late payment, increased claims) and exposure management, like not renewing a policy or implementing line reductions. On the other side is pricing optimization, which includes the initial pricing decision, whether to do special offers or provide discounts to entice profitable customers to stay or deepen their relationship, and the implement ion of the penalty pricing (e.g., if the customer goes over their limit or pays late).

The analytically elite companies have these types of analytics as part of their DNA. They are constantly loading new transaction or behavior data, evaluating assumptions, calibrating models, rebalancing among methodologies, reweighting results in ensemble infrastructures. “Constantly” used to mean monthly not too long ago. Increasingly it means weekly, daily or even as transactions are initiated.

Predictive Analytics Beyond Banking

Although financial services institutions are among the most advanced users, the potential benefits are available to many business areas. Already, predictive analytics are also making a difference in non-financial markets. For example in the government arena, it’s being used to reduce waste, identify fraud in government programs, and uncover tax fraud. In health care, it’s being employed for cost management, system fraud, and more accurate or quicker diagnoses. Finally in telecom, predictive analytics is being used to minimize customer base churn.

On that last point, basically any company has groups of customers it would like to manage, both in terms of customer relationship management (CRM) issues like customer acquisition and turnover, as well as tailoring product portfolios and pricing to different categories of customers.

Because of its broad potential applicability, predictive analytics should continue to be a significant growth driver for HPBC markets. The vast amount of data being collected by companies virtually guarantees that there are some valuable nuggets of information waiting to be brought to light that can have a material impact on profitability. Finding these needles in the haystack is a challenge, but predictive analytics provides a way for companies to take advantage of them.

About the Author

Sue Korn is a senior analyst at Intersect360 Research specializing in High Performance Business Computing (HPBC) applications, and a 20-year veteran of the financial services industry. In her role at Intersect360 Research, Korn spearheads the company’s analysis of the drivers and barriers of HPC adoption in business environments and the growing role of HPBC applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cos Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over th Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire