The Weekly Top Five

By Tiffany Trader

April 21, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover TACC’s agreement with Intel to develop the company’s MIC processor line; SGI’s Japanese gigs; the High Performance Computing Center Stuttgart’s new Cray systems; the mapping of red blood cells in the brain; and the creation of better fusion models using the Jaguar supercomputer.

TACC, Intel Collaborate for Open Science

Today the Texas Advanced Computing Center (TACC) at The University of Texas at Austin announced a new partnership with Intel to help the open science community prepare for Intel’s upcoming “many integrated core” (MIC) processor line. While there are 100 other Intel partners working on software development for the MIC processors, TACC is the first National Science Foundation (NSF) TeraGrid institution to partner with Intel for the benefit of the open-science community.

According to the release, TACC has been provided with a software development platform for pre-production “Knights Ferry” MIC processors and is already porting applications. Later this year, TACC and Intel will build a Knights Ferry-based cluster to explore scalability issues. The partners will report on their efforts at the November 2011 Supercomputing Conference. In addition, TACC will have early access to the first commercial MIC processors, codenamed “Knights Corner,” to ensure application performance.

Knight’s Corner will employ Intel’s 22-nm manufacturing process and will enable 50 cores on a single chip. While no official release date has been announced, there’s talk the commercial chips will debut in the second half of 2012. The chips are being targeted at applications with a high degree of data parallelism. Examples include molecular dynamics and quantum chemistry, as well as data-intensive applications like seismic imaging, sensor network analysis, and real-time analytics.

HPCwire Editor Michael Feldman reveals additional details on the architecture:

MIC represents Intel’s entry into the HPC processor accelerator sweepstakes, as the company attempts to perform an end-run around GPU computing. Mainly thanks to NVIDIA, over the last few years GPU computing, aka GPGPU, has become a mainstream HPC solution across workstations, clusters and supercomputers. They rely on specialized programming environments, like CUDA and OpenCL, to develop software on those platforms.

As suggested by its name, MIC is essentially an x86 processor, with more cores (but simpler ones) than a standard x86 CPU, an extra-wide SIMD unit for heavy duty vector math, and four-way SMT threading. As such, it’s meant to speed up codes that can exploit much higher levels of parallelization than can be had on standard x86 parts.

Feldman spoke with TACC’s deputy director Dan Stanzione, who was optimistic regarding the product’s x86 compatibility. As Stanzione confided to Feldman, “Moving a code to MIC might involve sitting down and adding a couple of lines of directives that takes a few minutes. Moving a code to a GPU is a project.”

SGI, Big in Japan

This week SGI announced it was selected by Japan’s Semiconductor Energy Laboratory (SEL) to provide an SGI Altix ICE 8400 system for semiconductor research and development applications. The supercomputer will support new technologies like thin-film integrated circuits, liquid crystal and electroluminescent displays, semiconductor thin-film transistors, solar cells, and batteries.

Outfitted with 3,840 Intel Xeon 5600 series processors and up to 15 terabytes of memory, the new compute cluster will be about ten times faster than its predecessor. Officials say the system will be operational in July.

Semiconductor Energy Laboratory, which has worked with SGI Japan in the past, cited SGI’s solid track-record and SGI Japan’s reputation for technical support as factors in their decision-making process.

Last Friday, SGI was selected to work with Bull on a 1.3 petaflop HPC system being installed at the International Fusion Energy Research Center in Rokkasho, Japan.

The High Performance Computing Center Stuttgart Orders Two Petascale Crays

The High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, part of the larger Gauss Centre for Supercomputing (GCS), will soon deploy a one-petaflop Cray XE6 supercomputer known as “Hermit.” Since the Gauss Centre for Supercomputing is a PRACE member institution, the new Cray supercomputer will be available to researchers, scientists and engineers throughout Europe.

This one-petaflop Hermit system, which is scheduled to debut in the fall of this year, will be followed by a 4-5 petaflop supercomputer as part of the second half of the project, to take place in 2013. The future Cray architecture is code-named “Cascade.”

HLRS Director Michael Resch commented on the center’s partnership with the big-league supercomputer-maker:

“Cray is just the right partner as we enter the era of petaflops computing. Together with Cray’s outstanding supercomputing technology, our center will be able to carry through the new initiative for engineering and industrial simulation. This is especially important as we work at the forefront of electric mobility and sustainable energy supply.”

HLRS is a key member of the Gauss Centre for Supercomputing (GCS), an alliance of three major supercomputing centers in Germany that together represent one of the world’s largest supercomputing resources. In addition to being one of the leading centers of the Partnership for Advanced Computing in Europe (PRACE) initiative, HLRS is the only major European HPC organization to work directly with industrial partners in automotive and aerospace engineering. These new installations will increase the overall capacity of the PRACE Research Infrastructure.

Researchers Create Detailed Blood Flow Models

A team of scientists from Brown University and the U.S. Department of Energy’s (DOE) Argonne National Laboratory are using the lab’s Blue Gene/P supercomputer to map the movement of red blood cells in the hopes that it will lead to better diagnoses and treatments for patients with blood flow disorders. The research was made possible through the DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, which awarded 50 million processor-hours to the project.

With advances in supercomputing, researchers can now create detailed models of blood flow down to the molecular level, enabling doctors to better understand how heart and blood diseases can be treated. This field of study is known as “biophysics” since “the forces that govern red blood cells’ movements at this level are best described by the laws of physics.”

Joe Insley, team member and principal software developer at Argonne, comments on the achievement:

“Previous computer models haven’t been able to accurately account for, say, the motion of the blood cells bending or buckling as they ricochet off the walls. This simulation is powerful enough to incorporate that extra level of detail.”

Part of the study involves mapping the movement of red blood cells in the brain. The team used similar modeling last year to discover that the malaria parasite causes its victims’ red blood cells to be 50 times stiffer than normal. According to the announcement, the research on blood flow in the brain could lead to treatments for diseases that affect blood flow, such as malaria, diabetes and HIV.

Another part of the study is looking at the relationship between cerebrospinal fluid and blood flow in the brain. When this system breaks down, it can put pressure on brain tissues, leaving the brain vulnerable to damage.

The researchers, led by G. E. Karniadakis, used Argonne’s Blue Gene/P supercomputer, located at the Argonne Leadership Computing Facility (ALCF). The IBM machine is capable of performing 500 trillion calculations per second, enough power to solve the most challenging science problems.

Jaguar Supercomputer Heats Up Fusion Reactions

A team of researchers is using Oak Ridge National Laboratory’s Jaguar supercomputer to study fusion reactions. The reactions produce helium from hydrogen and release energy in the process, and could be used to ignite ITER, an experimental fusion reactor under construction in southern France.

Zhihong Lin of the University of California-Irvine is working with General Atomics researcher Ron Waltz on the project. As part of the the Department of Energy’s INCITE program, the team received three years of processor time on the Oak Ridge Leadership Computing Facility’s Cray XT5 Jaguar, which can process two quadrillion calculations per second. These fusion simulations use between 5,000 and 50,000 of Jaguar’s 224,256 processing cores.

The research sheds light on the role of turbulence in a fusion plasma. Turbulence can threaten the fusion reaction by allowing charged particles to cool. According to the announcement, “Lin’s team is using simulations to develop ways of applying electromagnetic forces to overcome turbulence, heating the reactor, rather than cooling it.”

The researchers have been working to create computer programs that will lead to more accurate and useful fusion plasma simulations. According to Lin, a complete model will be capable of “simultaneously simulating all turbulent interactions between the particles in a fusion reaction.” His goal is to complete such a model by 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Dark Matter, Arrhythmia, Sustainability & More

February 28, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Microsoft Announces General Availability of AMD-backed Azure HBv2 Instances for HPC

February 27, 2020

Nearly seven months after they were first announced, Microsoft Azure’s HPC-targeted HBv2 virtual machines (VMs) based on AMD second-generation Epyc processors are ready for primetime. The new VMs, which Azure claims of Read more…

By Staff report

Sequoia Decommissioned, Making Room for El Capitan

February 27, 2020

After eight years of service, Sequoia has been felled. Once the most powerful publicly ranked supercomputer in the world, Sequoia – hosted by Lawrence Livermore National Laboratory (LLNL) – has been decommissioned to Read more…

By Oliver Peckham

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Blue Waters Supercomputer Helps Tackle Pandemic Flu Simulations

February 26, 2020

While not the novel coronavirus that is now sweeping across the world, the 2009 H1N1 flu pandemic (pH1N1) infected up to 21 percent of the global population and killed over 200,000 people. Now, a team of researchers from Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Micron Accelerator Bumps Up Memory Bandwidth

February 26, 2020

Deep learning accelerators based on chip architectures coupled with high-bandwidth memory are emerging to enable near real-time processing of machine learning algorithms. Memory chip specialist Micron Technology argues t Read more…

By George Leopold

Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software... Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

NOAA Lays Out Aggressive New AI Strategy

February 24, 2020

Roughly coincident with last week’s announcement of a planned tripling of its compute capacity, the National Oceanic and Atmospheric Administration issued an Read more…

By John Russell

New Supercomputer Cooling Method Saves Half-Million Gallons of Water at Sandia National Laboratories

February 24, 2020

A new cooling method for supercomputer systems is picking up steam – literally. After saving millions of gallons of water at a National Renewable Energy Laboratory (NREL) datacenter, this innovative approach, called... Read more…

By Oliver Peckham

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This