The Weekly Top Five

By Tiffany Trader

April 21, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover TACC’s agreement with Intel to develop the company’s MIC processor line; SGI’s Japanese gigs; the High Performance Computing Center Stuttgart’s new Cray systems; the mapping of red blood cells in the brain; and the creation of better fusion models using the Jaguar supercomputer.

TACC, Intel Collaborate for Open Science

Today the Texas Advanced Computing Center (TACC) at The University of Texas at Austin announced a new partnership with Intel to help the open science community prepare for Intel’s upcoming “many integrated core” (MIC) processor line. While there are 100 other Intel partners working on software development for the MIC processors, TACC is the first National Science Foundation (NSF) TeraGrid institution to partner with Intel for the benefit of the open-science community.

According to the release, TACC has been provided with a software development platform for pre-production “Knights Ferry” MIC processors and is already porting applications. Later this year, TACC and Intel will build a Knights Ferry-based cluster to explore scalability issues. The partners will report on their efforts at the November 2011 Supercomputing Conference. In addition, TACC will have early access to the first commercial MIC processors, codenamed “Knights Corner,” to ensure application performance.

Knight’s Corner will employ Intel’s 22-nm manufacturing process and will enable 50 cores on a single chip. While no official release date has been announced, there’s talk the commercial chips will debut in the second half of 2012. The chips are being targeted at applications with a high degree of data parallelism. Examples include molecular dynamics and quantum chemistry, as well as data-intensive applications like seismic imaging, sensor network analysis, and real-time analytics.

HPCwire Editor Michael Feldman reveals additional details on the architecture:

MIC represents Intel’s entry into the HPC processor accelerator sweepstakes, as the company attempts to perform an end-run around GPU computing. Mainly thanks to NVIDIA, over the last few years GPU computing, aka GPGPU, has become a mainstream HPC solution across workstations, clusters and supercomputers. They rely on specialized programming environments, like CUDA and OpenCL, to develop software on those platforms.

As suggested by its name, MIC is essentially an x86 processor, with more cores (but simpler ones) than a standard x86 CPU, an extra-wide SIMD unit for heavy duty vector math, and four-way SMT threading. As such, it’s meant to speed up codes that can exploit much higher levels of parallelization than can be had on standard x86 parts.

Feldman spoke with TACC’s deputy director Dan Stanzione, who was optimistic regarding the product’s x86 compatibility. As Stanzione confided to Feldman, “Moving a code to MIC might involve sitting down and adding a couple of lines of directives that takes a few minutes. Moving a code to a GPU is a project.”

SGI, Big in Japan

This week SGI announced it was selected by Japan’s Semiconductor Energy Laboratory (SEL) to provide an SGI Altix ICE 8400 system for semiconductor research and development applications. The supercomputer will support new technologies like thin-film integrated circuits, liquid crystal and electroluminescent displays, semiconductor thin-film transistors, solar cells, and batteries.

Outfitted with 3,840 Intel Xeon 5600 series processors and up to 15 terabytes of memory, the new compute cluster will be about ten times faster than its predecessor. Officials say the system will be operational in July.

Semiconductor Energy Laboratory, which has worked with SGI Japan in the past, cited SGI’s solid track-record and SGI Japan’s reputation for technical support as factors in their decision-making process.

Last Friday, SGI was selected to work with Bull on a 1.3 petaflop HPC system being installed at the International Fusion Energy Research Center in Rokkasho, Japan.

The High Performance Computing Center Stuttgart Orders Two Petascale Crays

The High Performance Computing Center Stuttgart (HLRS) of the University of Stuttgart, part of the larger Gauss Centre for Supercomputing (GCS), will soon deploy a one-petaflop Cray XE6 supercomputer known as “Hermit.” Since the Gauss Centre for Supercomputing is a PRACE member institution, the new Cray supercomputer will be available to researchers, scientists and engineers throughout Europe.

This one-petaflop Hermit system, which is scheduled to debut in the fall of this year, will be followed by a 4-5 petaflop supercomputer as part of the second half of the project, to take place in 2013. The future Cray architecture is code-named “Cascade.”

HLRS Director Michael Resch commented on the center’s partnership with the big-league supercomputer-maker:

“Cray is just the right partner as we enter the era of petaflops computing. Together with Cray’s outstanding supercomputing technology, our center will be able to carry through the new initiative for engineering and industrial simulation. This is especially important as we work at the forefront of electric mobility and sustainable energy supply.”

HLRS is a key member of the Gauss Centre for Supercomputing (GCS), an alliance of three major supercomputing centers in Germany that together represent one of the world’s largest supercomputing resources. In addition to being one of the leading centers of the Partnership for Advanced Computing in Europe (PRACE) initiative, HLRS is the only major European HPC organization to work directly with industrial partners in automotive and aerospace engineering. These new installations will increase the overall capacity of the PRACE Research Infrastructure.

Researchers Create Detailed Blood Flow Models

A team of scientists from Brown University and the U.S. Department of Energy’s (DOE) Argonne National Laboratory are using the lab’s Blue Gene/P supercomputer to map the movement of red blood cells in the hopes that it will lead to better diagnoses and treatments for patients with blood flow disorders. The research was made possible through the DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, which awarded 50 million processor-hours to the project.

With advances in supercomputing, researchers can now create detailed models of blood flow down to the molecular level, enabling doctors to better understand how heart and blood diseases can be treated. This field of study is known as “biophysics” since “the forces that govern red blood cells’ movements at this level are best described by the laws of physics.”

Joe Insley, team member and principal software developer at Argonne, comments on the achievement:

“Previous computer models haven’t been able to accurately account for, say, the motion of the blood cells bending or buckling as they ricochet off the walls. This simulation is powerful enough to incorporate that extra level of detail.”

Part of the study involves mapping the movement of red blood cells in the brain. The team used similar modeling last year to discover that the malaria parasite causes its victims’ red blood cells to be 50 times stiffer than normal. According to the announcement, the research on blood flow in the brain could lead to treatments for diseases that affect blood flow, such as malaria, diabetes and HIV.

Another part of the study is looking at the relationship between cerebrospinal fluid and blood flow in the brain. When this system breaks down, it can put pressure on brain tissues, leaving the brain vulnerable to damage.

The researchers, led by G. E. Karniadakis, used Argonne’s Blue Gene/P supercomputer, located at the Argonne Leadership Computing Facility (ALCF). The IBM machine is capable of performing 500 trillion calculations per second, enough power to solve the most challenging science problems.

Jaguar Supercomputer Heats Up Fusion Reactions

A team of researchers is using Oak Ridge National Laboratory’s Jaguar supercomputer to study fusion reactions. The reactions produce helium from hydrogen and release energy in the process, and could be used to ignite ITER, an experimental fusion reactor under construction in southern France.

Zhihong Lin of the University of California-Irvine is working with General Atomics researcher Ron Waltz on the project. As part of the the Department of Energy’s INCITE program, the team received three years of processor time on the Oak Ridge Leadership Computing Facility’s Cray XT5 Jaguar, which can process two quadrillion calculations per second. These fusion simulations use between 5,000 and 50,000 of Jaguar’s 224,256 processing cores.

The research sheds light on the role of turbulence in a fusion plasma. Turbulence can threaten the fusion reaction by allowing charged particles to cool. According to the announcement, “Lin’s team is using simulations to develop ways of applying electromagnetic forces to overcome turbulence, heating the reactor, rather than cooling it.”

The researchers have been working to create computer programs that will lead to more accurate and useful fusion plasma simulations. According to Lin, a complete model will be capable of “simultaneously simulating all turbulent interactions between the particles in a fusion reaction.” His goal is to complete such a model by 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This