Will AMD ARM Itself?

By Michael Feldman

April 28, 2011

AMD has been plugging away at the x86 business for nearly 20 years now. In 1982 the company crafted a licensing deal with Intel to become an alternative source of x86 processors for the burgeoning personal computer market — specifically to satisfy IBM’s demands for two sources of CPUs for its new PC offerings. And although AMD has parlayed this into a multi-billion dollar business, Intel has never allowed its smaller competitor to be anything but a secondary choice for x86 parts.

As of the first quarter of 2011, Intel owns 81 percent of the x86 processor space, with AMD a distant second with 18.2 percent. The numbers are not much different than they were in 2010 and are not likely to be much different in 2012, 2013, 2014, and so on. The only thing that has maintained AMD’s viability is the sheer size of the market and Intel’s willingness to keep AMD as a co-dependent partner.

But as AMD proved when it acquired GPU-maker ATI in 2006, it is not adverse to adopting new processor technology when it suits the company’s purpose. Now there’s talk that AMD may be considering a second leap of faith, this time in the direction of the ARM architecture — a low-power CPU design that has become the darling of the mobile computing space. An analysis this week by Peter Clarke for EE Times spells out why a fully-ARMed AMD makes a lot of sense.

To begin with, Clarke argues that playing catch-up with Intel is not the greatest recipe for success, especially now that AMD has gotten out the fab business and can thus no longer compete on that playing field. And — although Clarke didn’t point this out — AMD has lost much of its x86 architectural differentiation when Intel adopted AMD’s system design of integrated memory controllers and a HyperTransport like interconnect in QPI. At least for AMD’s non-GPU business, this forces the company to shrink its margins by trying to undercut its larger rival on price.

But the shorter term rationale for hopping on the ARM bandwagon is to expand AMD’s footprint beyond its x86 base. Today the company doesn’t have viable low-power offerings for the rapidly-growing tablet and mobile device space, and ARM could make for a relatively pain-free path into those markets. And with Microsoft’s endorsement of ARM as a Windows platform, AMD could also create non-x86 offerings for traditional desktops and notebooks. And the company wouldn’t have to jettison its x86 portfolio to do any of this.

Clarke notes that for the cost of a few million dollars and a few percent royalty per processor, AMD would be able to jumpstart its ARM business. From his EE Times article:

….Now it may be that a hard-pressed AMD was simply unable to create designs for all the different sectors and performance profiles in a proliferating PC landscape. But that alone is reason to get off the x86 treadmill and let ARM do some of the heavy lifting. And having missed the tablet computer boom ARM licensing would provide the fastest way for AMD to get a chip to market and make up lost ground.

Beyond that, ARM appears headed to server-land, although according to ARM Holdings president and co-founder Tudor Brown, not for another five years or so. But to my mind, this is yet another reason for AMD to start its ARM adventure now. When ARM Holdings comes up with its anticipated 64-bit design, it’s only a hop, skip and a jump to a fully-fledged server implementation.

In fact, if ARM-based servers are to become a reality, somebody will have to develop those chips, and AMD has the right combo of system engineering smarts and business relationships to make it happen. Some of the happiest days at AMD were when it outflanked Intel with its 64-bit x86 Opteron designs (at a time when Intel believed its new Itanium CPU would take the high ground 64-bit servers). It wouldn’t surprise me if there are some execs at AMD who are dreaming about a repeat performance recast under the ARM umbrella.

A future ARM-based server landscape may be a little trickier to navigate than the x86 one, though. Since the architecture can be licensed by anyone, there’s nothing to prevent any server maker from coming up with its own SoC designs. In fact IBM and Fujitsu already license ARM for other purposes. For that matter, even ARM chip vendors like Samsung and Texas Instruments could start churning out server-grade designs if they could come up with the business.

Calxeda (formerly Smooth-Stone) is getting ready to launch an ARM server based on the current generation 32-bit CPU designs. A 2U enclosure will house up to 120 ARM quad-core nodes, while chewing up only about 5 watts per node (including memory). The company claims a single 2U box will deliver the same throughput as a rack of vanilla x86 servers, reducing power requirements by 90 percent.

For the HPC crowd, NVIDIA has announced its intentions to marry ARM CPUs with it GPU technology. The GPU maker’s “Project Denver” will glue the two architectures together, AMD Fusion-like, and create a family of processors for personal computers, workstations, servers and supercomputers. In fact, if AMD perceives NVIDIA’s ARM formula for heterogenous processors as a threat to its own Fusion processor plans, that would be yet another reason to hedge its bets with ARM.

Fueling some this AMD-ARM speculation is this week’s announcement that ARM fellow and vice president Jem Davies will deliver a keynote at the next AMD Fusion Developer Summit in June. Davies is on tap to discuss ARM’s legacy of heterogeneous computing, its future strategy, and its support of OpenCL.

It’s likely this is nothing more than AMD looking to highlight industry support for hetero computing and OpenCL. But it’s worth noting that ARM products, especially ones with the GPGPU-ready Mali graphics hardware (Mali-400 MP and Mali-604), ostensibly compete with AMD’s Fusion chips. At the Many-core and Reconfigurable Supercomputing Conference held early this month in the UK, Dr. Krisztian Flautner, vice president of research & development at ARM, said the company would be releasing a reference design board that includes an ARM CPU plus a Mali 604 GPU, along with a full OpenCL 1.1 implementation that targets both computing units. So one might wonder why AMD would spotlight such technology at one of its events.

In any case, I think Clarke’s analysis is on target and I’ve got to believe the AMD digerati are mulling over an ARM play. In retrospect, it’s a little surprising they haven’t already pulled the trigger. After 20 years of playing second fiddle to Intel, it’s time for the company to strike out on its own.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This