Will AMD ARM Itself?

By Michael Feldman

April 28, 2011

AMD has been plugging away at the x86 business for nearly 20 years now. In 1982 the company crafted a licensing deal with Intel to become an alternative source of x86 processors for the burgeoning personal computer market — specifically to satisfy IBM’s demands for two sources of CPUs for its new PC offerings. And although AMD has parlayed this into a multi-billion dollar business, Intel has never allowed its smaller competitor to be anything but a secondary choice for x86 parts.

As of the first quarter of 2011, Intel owns 81 percent of the x86 processor space, with AMD a distant second with 18.2 percent. The numbers are not much different than they were in 2010 and are not likely to be much different in 2012, 2013, 2014, and so on. The only thing that has maintained AMD’s viability is the sheer size of the market and Intel’s willingness to keep AMD as a co-dependent partner.

But as AMD proved when it acquired GPU-maker ATI in 2006, it is not adverse to adopting new processor technology when it suits the company’s purpose. Now there’s talk that AMD may be considering a second leap of faith, this time in the direction of the ARM architecture — a low-power CPU design that has become the darling of the mobile computing space. An analysis this week by Peter Clarke for EE Times spells out why a fully-ARMed AMD makes a lot of sense.

To begin with, Clarke argues that playing catch-up with Intel is not the greatest recipe for success, especially now that AMD has gotten out the fab business and can thus no longer compete on that playing field. And — although Clarke didn’t point this out — AMD has lost much of its x86 architectural differentiation when Intel adopted AMD’s system design of integrated memory controllers and a HyperTransport like interconnect in QPI. At least for AMD’s non-GPU business, this forces the company to shrink its margins by trying to undercut its larger rival on price.

But the shorter term rationale for hopping on the ARM bandwagon is to expand AMD’s footprint beyond its x86 base. Today the company doesn’t have viable low-power offerings for the rapidly-growing tablet and mobile device space, and ARM could make for a relatively pain-free path into those markets. And with Microsoft’s endorsement of ARM as a Windows platform, AMD could also create non-x86 offerings for traditional desktops and notebooks. And the company wouldn’t have to jettison its x86 portfolio to do any of this.

Clarke notes that for the cost of a few million dollars and a few percent royalty per processor, AMD would be able to jumpstart its ARM business. From his EE Times article:

….Now it may be that a hard-pressed AMD was simply unable to create designs for all the different sectors and performance profiles in a proliferating PC landscape. But that alone is reason to get off the x86 treadmill and let ARM do some of the heavy lifting. And having missed the tablet computer boom ARM licensing would provide the fastest way for AMD to get a chip to market and make up lost ground.

Beyond that, ARM appears headed to server-land, although according to ARM Holdings president and co-founder Tudor Brown, not for another five years or so. But to my mind, this is yet another reason for AMD to start its ARM adventure now. When ARM Holdings comes up with its anticipated 64-bit design, it’s only a hop, skip and a jump to a fully-fledged server implementation.

In fact, if ARM-based servers are to become a reality, somebody will have to develop those chips, and AMD has the right combo of system engineering smarts and business relationships to make it happen. Some of the happiest days at AMD were when it outflanked Intel with its 64-bit x86 Opteron designs (at a time when Intel believed its new Itanium CPU would take the high ground 64-bit servers). It wouldn’t surprise me if there are some execs at AMD who are dreaming about a repeat performance recast under the ARM umbrella.

A future ARM-based server landscape may be a little trickier to navigate than the x86 one, though. Since the architecture can be licensed by anyone, there’s nothing to prevent any server maker from coming up with its own SoC designs. In fact IBM and Fujitsu already license ARM for other purposes. For that matter, even ARM chip vendors like Samsung and Texas Instruments could start churning out server-grade designs if they could come up with the business.

Calxeda (formerly Smooth-Stone) is getting ready to launch an ARM server based on the current generation 32-bit CPU designs. A 2U enclosure will house up to 120 ARM quad-core nodes, while chewing up only about 5 watts per node (including memory). The company claims a single 2U box will deliver the same throughput as a rack of vanilla x86 servers, reducing power requirements by 90 percent.

For the HPC crowd, NVIDIA has announced its intentions to marry ARM CPUs with it GPU technology. The GPU maker’s “Project Denver” will glue the two architectures together, AMD Fusion-like, and create a family of processors for personal computers, workstations, servers and supercomputers. In fact, if AMD perceives NVIDIA’s ARM formula for heterogenous processors as a threat to its own Fusion processor plans, that would be yet another reason to hedge its bets with ARM.

Fueling some this AMD-ARM speculation is this week’s announcement that ARM fellow and vice president Jem Davies will deliver a keynote at the next AMD Fusion Developer Summit in June. Davies is on tap to discuss ARM’s legacy of heterogeneous computing, its future strategy, and its support of OpenCL.

It’s likely this is nothing more than AMD looking to highlight industry support for hetero computing and OpenCL. But it’s worth noting that ARM products, especially ones with the GPGPU-ready Mali graphics hardware (Mali-400 MP and Mali-604), ostensibly compete with AMD’s Fusion chips. At the Many-core and Reconfigurable Supercomputing Conference held early this month in the UK, Dr. Krisztian Flautner, vice president of research & development at ARM, said the company would be releasing a reference design board that includes an ARM CPU plus a Mali 604 GPU, along with a full OpenCL 1.1 implementation that targets both computing units. So one might wonder why AMD would spotlight such technology at one of its events.

In any case, I think Clarke’s analysis is on target and I’ve got to believe the AMD digerati are mulling over an ARM play. In retrospect, it’s a little surprising they haven’t already pulled the trigger. After 20 years of playing second fiddle to Intel, it’s time for the company to strike out on its own.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This