Startup Launches Manycore Floating Point Acceleration Technology

By Michael Feldman

May 3, 2011

Semiconductor startup Adapteva has demonstrated a manycore floating point processor architecture that promises ten times the performance per watt as the best chip technology on the market today. The architecture, called Epiphany, is aimed initially at embedded applications, but has general applicability across all math-intensive workloads in mobile computing, telecommunications and high performance computing.

Epiphany is the brainchild of Adapteva CEO and founder Andreas Olofsson, who spent nearly 15 years as chip designer, first at for Texas Instruments and later at Analog Devices. Olofsson has managed to bootstrap his company with less than $2 million, initially paying out of his own pocket to get the company up and running. An angel investor subsequently kicked in $275 thousand followed by a $1.5 million investment from BittWare, a maker of DSP and FPGA boards.

As a chip designer, Olofsson’s principle focus was in DSP designs, which he says is an excellent model for processors that need to optimize data movement and throughput in an extremely energy constrained environment. Unlike a DSP, however, Epiphany is a general-purpose design that can execute any ANSI C programs.

The architecture is a 2D mesh of general-purpose RISC cores hooked up via a high bandwidth, low latency on-chip network. The current implementation has 16 cores, but a 4 thousand core version is already in the works. The design is similar to Tilera‘s manycore chips, but with a singular focus on floating point execution. As Olofsson puts it: “We can run any program out of the box, but where we really shine is floating point processing.”

Specifically, the architecture is designed to run the inner loops of math codes with the utmost efficiency. Workloads like image processing, speech recognition, and any other sort of pattern matching code that relies heavily on vector math is right in Epiphany’s wheelhouse.

Imagine a future iPhone 9 with Epiphany on-board. One might be able to hold a conference call between individuals in the UK, China and India and all three people would hear the conversation in their native language thanks to real-time translation. Or the same phone could take a photo of a crowd of people and on-board image recognition software would instantly identify the faces and tell you who they are. Today, these types of applications are possible on an HPC cluster (or perhaps a really souped up GPU-accelerated workstation), but making them available on mobile devices like smartphones and tablets is still science fiction.

Besides the emphasis on floating point horsepower, the Epiphany design departs from traditional CPUs in a number of ways. To begin with, the processor doesn’t have a hardware cache. Each core has 32 KB of local memory, which is accessible by all the other cores, but access to this memory must be done explicitly in the software. That’s a very different programming model than that used in mainstream CPUs today. “Once you throw away the cache hierarchy, a lot of the inefficiencies of general-purpose architectures go away,” explains Olofsson.

Without the hardware cache, data movement becomes much more efficient. Essentially, the application can perform explicit data copying with zero overhead (no cache misses or copying of unused data). But, Olofsson concedes that this model doesn’t work for the vast majority of legacy codes that assumes there is a “magic cache engine” that brings in the data automatically.

The other big feature of Epiphany is its high performance on-chip interconnect, which allows data to be passed between cores with basically no overhead. In traditional architectures with memory hierarchies, communication costs tend to be extremely high. Here they are essentially free, says Olofsson. With Epiphany’s lightweight processing engines and fat pipes, even very small packets of data can be sent between cores without impacting performance.
 
Olofsson says the optimal software for such an architecture is message passing, but not necessarily MPI, which is designed with interprocessor communication in mind. At least initially, the intent is to adopt MCAPI (Multicore Communications API ), a message passing framework optimized for manycore architectures.

The Epiphany reference design, demonstrated this week at the Multicore Expo in San Jose, California, is a 16-core processor running at a relatively modest 1 GHz, with each core delivering 2 gigaflops. It boasts a peak efficiency of 35 gigaflops/watt, although in this current implementation, we’re talking 32-bit (single precision) FP. Despite that, it outruns the current top-of-the-line gaming GPUs on the market, which in single precision mode, can hit about 10 gigaflops/watt (the latest NVIDIA Tesla part aimed at computing achieves about half that). A conventional CPU like the Power7 delivers about 1.3 gigaflops/watt, while the latest Xeons top out at a modest 0.5 gigaflops/watt.

Although the Adapteva design scrimps on integer smarts, it still claims decent performance in this realm as well. According to Olofsson, a single Epiphany core is nearly equal to a core of the ARM11 MPCore on the CoreMark score. But the Adapteva silicon is not designed to replace ARM or, for that matter, any other general-purpose CPU. These CPUs already run the large code base of sequential codes rather well. Also, Epiphany lacks the memory hierarchy and paging support need to run system-level software like operating systems or hypervisors.

Olofsson thinks the initial big opportunity for Epiphany is in consumer mobile devices and embedded systems for the military, where power efficiency is the overwhelming consideration. But the Adapteva technology not meant to be used as a standalone co-processor, as ClearSpeed tried to do unsuccessfully with its CSX600 offering. Rather Adapteva intends to license the intellectual property (IP) to OEMs and chip vendors.

For mobile devices, in particular, the idea would be for system designers to integrate the Epiphany IP into a more general-purpose design, most likely an ARM implementation. (16 cores of Epiphany would take up just a fraction of the space and power of a high-end ARM chip.) Like AMD’s CPU-GPU Fusion design and NVIDIA’s upcoming “Project Denver” ARM-GPU chips, the Epiphany logic would take the of an on-chip FP accelerator in a heterogenous processor.

The aforementioned BittWare is already OEMing the technology. In this case, the company is using the Epiphany chip as a floating point accelerator on an FPGA-based signal processing board for military application. With the heavy-duty math offloaded to the co-processor, the FPGA is free to concentrate on the non-FP processing part of the application.

Currently, Adapteva offers a bare bones development kit for its hardware, including an GNU-based ANSI C compiler, a gdb debugger, a simulator, and an Eclipse IDE for project management. What’s missing is the runtime model and communication libraries. For that they have secured an unnamed commercial partner who is helping to fill out the software stack, and who, according to Olofsson, has built an environment suitable for programming millions of cores.

Although the 32-bit, 16-core reference design is the only one available today, Adapteva is also working on a 64-bit implementation of the architecture that it’s planning to launch in the second half of the year. At the 28nm node, Olofsson thinks they can get up to 1,000 64-bit floating point cores on the die.

For 32-bit designs, the company has already completed the layout for a 4,096-core implementation on 28nm technology. That version is projected to use just 64 watts of power and deliver more than 4 peak teraflops of compute (so between 50 and 80 gigaflops/watt). Olofsson says this 4K-core design will be ready by the end of 2011.

For the supercomputing crowd looking ahead to exascale hardware, these performance per watt numbers are rather compelling. So much so that Olofsson was invited to present his architecture at symposiums conducted by Los Alamos National Lab and the PRACE organization in Europe. These top tier users expect to build exascale machines that deliver 50 double precision gigaflops/watt in the 2018 timeframe. Since that includes memory and communication hardware, in addition to compute, the processors themselves will have to deliver in excess of 100 gigaflops/watt.

Although mainstream architectures like GPUs and other manycore technologies, like Intel’s MIC processor, may be able to evolve fast enough to serve this purpose, the Epiphany technology could offer a more straight-line path to such performance levels. If Adapteva is able to establish itself in a volume market like smartphones and tablets, the technology could very well end up in our future supercomputers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This