Startup Launches Manycore Floating Point Acceleration Technology

By Michael Feldman

May 3, 2011

Semiconductor startup Adapteva has demonstrated a manycore floating point processor architecture that promises ten times the performance per watt as the best chip technology on the market today. The architecture, called Epiphany, is aimed initially at embedded applications, but has general applicability across all math-intensive workloads in mobile computing, telecommunications and high performance computing.

Epiphany is the brainchild of Adapteva CEO and founder Andreas Olofsson, who spent nearly 15 years as chip designer, first at for Texas Instruments and later at Analog Devices. Olofsson has managed to bootstrap his company with less than $2 million, initially paying out of his own pocket to get the company up and running. An angel investor subsequently kicked in $275 thousand followed by a $1.5 million investment from BittWare, a maker of DSP and FPGA boards.

As a chip designer, Olofsson’s principle focus was in DSP designs, which he says is an excellent model for processors that need to optimize data movement and throughput in an extremely energy constrained environment. Unlike a DSP, however, Epiphany is a general-purpose design that can execute any ANSI C programs.

The architecture is a 2D mesh of general-purpose RISC cores hooked up via a high bandwidth, low latency on-chip network. The current implementation has 16 cores, but a 4 thousand core version is already in the works. The design is similar to Tilera‘s manycore chips, but with a singular focus on floating point execution. As Olofsson puts it: “We can run any program out of the box, but where we really shine is floating point processing.”

Specifically, the architecture is designed to run the inner loops of math codes with the utmost efficiency. Workloads like image processing, speech recognition, and any other sort of pattern matching code that relies heavily on vector math is right in Epiphany’s wheelhouse.

Imagine a future iPhone 9 with Epiphany on-board. One might be able to hold a conference call between individuals in the UK, China and India and all three people would hear the conversation in their native language thanks to real-time translation. Or the same phone could take a photo of a crowd of people and on-board image recognition software would instantly identify the faces and tell you who they are. Today, these types of applications are possible on an HPC cluster (or perhaps a really souped up GPU-accelerated workstation), but making them available on mobile devices like smartphones and tablets is still science fiction.

Besides the emphasis on floating point horsepower, the Epiphany design departs from traditional CPUs in a number of ways. To begin with, the processor doesn’t have a hardware cache. Each core has 32 KB of local memory, which is accessible by all the other cores, but access to this memory must be done explicitly in the software. That’s a very different programming model than that used in mainstream CPUs today. “Once you throw away the cache hierarchy, a lot of the inefficiencies of general-purpose architectures go away,” explains Olofsson.

Without the hardware cache, data movement becomes much more efficient. Essentially, the application can perform explicit data copying with zero overhead (no cache misses or copying of unused data). But, Olofsson concedes that this model doesn’t work for the vast majority of legacy codes that assumes there is a “magic cache engine” that brings in the data automatically.

The other big feature of Epiphany is its high performance on-chip interconnect, which allows data to be passed between cores with basically no overhead. In traditional architectures with memory hierarchies, communication costs tend to be extremely high. Here they are essentially free, says Olofsson. With Epiphany’s lightweight processing engines and fat pipes, even very small packets of data can be sent between cores without impacting performance.
 
Olofsson says the optimal software for such an architecture is message passing, but not necessarily MPI, which is designed with interprocessor communication in mind. At least initially, the intent is to adopt MCAPI (Multicore Communications API ), a message passing framework optimized for manycore architectures.

The Epiphany reference design, demonstrated this week at the Multicore Expo in San Jose, California, is a 16-core processor running at a relatively modest 1 GHz, with each core delivering 2 gigaflops. It boasts a peak efficiency of 35 gigaflops/watt, although in this current implementation, we’re talking 32-bit (single precision) FP. Despite that, it outruns the current top-of-the-line gaming GPUs on the market, which in single precision mode, can hit about 10 gigaflops/watt (the latest NVIDIA Tesla part aimed at computing achieves about half that). A conventional CPU like the Power7 delivers about 1.3 gigaflops/watt, while the latest Xeons top out at a modest 0.5 gigaflops/watt.

Although the Adapteva design scrimps on integer smarts, it still claims decent performance in this realm as well. According to Olofsson, a single Epiphany core is nearly equal to a core of the ARM11 MPCore on the CoreMark score. But the Adapteva silicon is not designed to replace ARM or, for that matter, any other general-purpose CPU. These CPUs already run the large code base of sequential codes rather well. Also, Epiphany lacks the memory hierarchy and paging support need to run system-level software like operating systems or hypervisors.

Olofsson thinks the initial big opportunity for Epiphany is in consumer mobile devices and embedded systems for the military, where power efficiency is the overwhelming consideration. But the Adapteva technology not meant to be used as a standalone co-processor, as ClearSpeed tried to do unsuccessfully with its CSX600 offering. Rather Adapteva intends to license the intellectual property (IP) to OEMs and chip vendors.

For mobile devices, in particular, the idea would be for system designers to integrate the Epiphany IP into a more general-purpose design, most likely an ARM implementation. (16 cores of Epiphany would take up just a fraction of the space and power of a high-end ARM chip.) Like AMD’s CPU-GPU Fusion design and NVIDIA’s upcoming “Project Denver” ARM-GPU chips, the Epiphany logic would take the of an on-chip FP accelerator in a heterogenous processor.

The aforementioned BittWare is already OEMing the technology. In this case, the company is using the Epiphany chip as a floating point accelerator on an FPGA-based signal processing board for military application. With the heavy-duty math offloaded to the co-processor, the FPGA is free to concentrate on the non-FP processing part of the application.

Currently, Adapteva offers a bare bones development kit for its hardware, including an GNU-based ANSI C compiler, a gdb debugger, a simulator, and an Eclipse IDE for project management. What’s missing is the runtime model and communication libraries. For that they have secured an unnamed commercial partner who is helping to fill out the software stack, and who, according to Olofsson, has built an environment suitable for programming millions of cores.

Although the 32-bit, 16-core reference design is the only one available today, Adapteva is also working on a 64-bit implementation of the architecture that it’s planning to launch in the second half of the year. At the 28nm node, Olofsson thinks they can get up to 1,000 64-bit floating point cores on the die.

For 32-bit designs, the company has already completed the layout for a 4,096-core implementation on 28nm technology. That version is projected to use just 64 watts of power and deliver more than 4 peak teraflops of compute (so between 50 and 80 gigaflops/watt). Olofsson says this 4K-core design will be ready by the end of 2011.

For the supercomputing crowd looking ahead to exascale hardware, these performance per watt numbers are rather compelling. So much so that Olofsson was invited to present his architecture at symposiums conducted by Los Alamos National Lab and the PRACE organization in Europe. These top tier users expect to build exascale machines that deliver 50 double precision gigaflops/watt in the 2018 timeframe. Since that includes memory and communication hardware, in addition to compute, the processors themselves will have to deliver in excess of 100 gigaflops/watt.

Although mainstream architectures like GPUs and other manycore technologies, like Intel’s MIC processor, may be able to evolve fast enough to serve this purpose, the Epiphany technology could offer a more straight-line path to such performance levels. If Adapteva is able to establish itself in a volume market like smartphones and tablets, the technology could very well end up in our future supercomputers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This