Startup Launches Manycore Floating Point Acceleration Technology

By Michael Feldman

May 3, 2011

Semiconductor startup Adapteva has demonstrated a manycore floating point processor architecture that promises ten times the performance per watt as the best chip technology on the market today. The architecture, called Epiphany, is aimed initially at embedded applications, but has general applicability across all math-intensive workloads in mobile computing, telecommunications and high performance computing.

Epiphany is the brainchild of Adapteva CEO and founder Andreas Olofsson, who spent nearly 15 years as chip designer, first at for Texas Instruments and later at Analog Devices. Olofsson has managed to bootstrap his company with less than $2 million, initially paying out of his own pocket to get the company up and running. An angel investor subsequently kicked in $275 thousand followed by a $1.5 million investment from BittWare, a maker of DSP and FPGA boards.

As a chip designer, Olofsson’s principle focus was in DSP designs, which he says is an excellent model for processors that need to optimize data movement and throughput in an extremely energy constrained environment. Unlike a DSP, however, Epiphany is a general-purpose design that can execute any ANSI C programs.

The architecture is a 2D mesh of general-purpose RISC cores hooked up via a high bandwidth, low latency on-chip network. The current implementation has 16 cores, but a 4 thousand core version is already in the works. The design is similar to Tilera‘s manycore chips, but with a singular focus on floating point execution. As Olofsson puts it: “We can run any program out of the box, but where we really shine is floating point processing.”

Specifically, the architecture is designed to run the inner loops of math codes with the utmost efficiency. Workloads like image processing, speech recognition, and any other sort of pattern matching code that relies heavily on vector math is right in Epiphany’s wheelhouse.

Imagine a future iPhone 9 with Epiphany on-board. One might be able to hold a conference call between individuals in the UK, China and India and all three people would hear the conversation in their native language thanks to real-time translation. Or the same phone could take a photo of a crowd of people and on-board image recognition software would instantly identify the faces and tell you who they are. Today, these types of applications are possible on an HPC cluster (or perhaps a really souped up GPU-accelerated workstation), but making them available on mobile devices like smartphones and tablets is still science fiction.

Besides the emphasis on floating point horsepower, the Epiphany design departs from traditional CPUs in a number of ways. To begin with, the processor doesn’t have a hardware cache. Each core has 32 KB of local memory, which is accessible by all the other cores, but access to this memory must be done explicitly in the software. That’s a very different programming model than that used in mainstream CPUs today. “Once you throw away the cache hierarchy, a lot of the inefficiencies of general-purpose architectures go away,” explains Olofsson.

Without the hardware cache, data movement becomes much more efficient. Essentially, the application can perform explicit data copying with zero overhead (no cache misses or copying of unused data). But, Olofsson concedes that this model doesn’t work for the vast majority of legacy codes that assumes there is a “magic cache engine” that brings in the data automatically.

The other big feature of Epiphany is its high performance on-chip interconnect, which allows data to be passed between cores with basically no overhead. In traditional architectures with memory hierarchies, communication costs tend to be extremely high. Here they are essentially free, says Olofsson. With Epiphany’s lightweight processing engines and fat pipes, even very small packets of data can be sent between cores without impacting performance.
 
Olofsson says the optimal software for such an architecture is message passing, but not necessarily MPI, which is designed with interprocessor communication in mind. At least initially, the intent is to adopt MCAPI (Multicore Communications API ), a message passing framework optimized for manycore architectures.

The Epiphany reference design, demonstrated this week at the Multicore Expo in San Jose, California, is a 16-core processor running at a relatively modest 1 GHz, with each core delivering 2 gigaflops. It boasts a peak efficiency of 35 gigaflops/watt, although in this current implementation, we’re talking 32-bit (single precision) FP. Despite that, it outruns the current top-of-the-line gaming GPUs on the market, which in single precision mode, can hit about 10 gigaflops/watt (the latest NVIDIA Tesla part aimed at computing achieves about half that). A conventional CPU like the Power7 delivers about 1.3 gigaflops/watt, while the latest Xeons top out at a modest 0.5 gigaflops/watt.

Although the Adapteva design scrimps on integer smarts, it still claims decent performance in this realm as well. According to Olofsson, a single Epiphany core is nearly equal to a core of the ARM11 MPCore on the CoreMark score. But the Adapteva silicon is not designed to replace ARM or, for that matter, any other general-purpose CPU. These CPUs already run the large code base of sequential codes rather well. Also, Epiphany lacks the memory hierarchy and paging support need to run system-level software like operating systems or hypervisors.

Olofsson thinks the initial big opportunity for Epiphany is in consumer mobile devices and embedded systems for the military, where power efficiency is the overwhelming consideration. But the Adapteva technology not meant to be used as a standalone co-processor, as ClearSpeed tried to do unsuccessfully with its CSX600 offering. Rather Adapteva intends to license the intellectual property (IP) to OEMs and chip vendors.

For mobile devices, in particular, the idea would be for system designers to integrate the Epiphany IP into a more general-purpose design, most likely an ARM implementation. (16 cores of Epiphany would take up just a fraction of the space and power of a high-end ARM chip.) Like AMD’s CPU-GPU Fusion design and NVIDIA’s upcoming “Project Denver” ARM-GPU chips, the Epiphany logic would take the of an on-chip FP accelerator in a heterogenous processor.

The aforementioned BittWare is already OEMing the technology. In this case, the company is using the Epiphany chip as a floating point accelerator on an FPGA-based signal processing board for military application. With the heavy-duty math offloaded to the co-processor, the FPGA is free to concentrate on the non-FP processing part of the application.

Currently, Adapteva offers a bare bones development kit for its hardware, including an GNU-based ANSI C compiler, a gdb debugger, a simulator, and an Eclipse IDE for project management. What’s missing is the runtime model and communication libraries. For that they have secured an unnamed commercial partner who is helping to fill out the software stack, and who, according to Olofsson, has built an environment suitable for programming millions of cores.

Although the 32-bit, 16-core reference design is the only one available today, Adapteva is also working on a 64-bit implementation of the architecture that it’s planning to launch in the second half of the year. At the 28nm node, Olofsson thinks they can get up to 1,000 64-bit floating point cores on the die.

For 32-bit designs, the company has already completed the layout for a 4,096-core implementation on 28nm technology. That version is projected to use just 64 watts of power and deliver more than 4 peak teraflops of compute (so between 50 and 80 gigaflops/watt). Olofsson says this 4K-core design will be ready by the end of 2011.

For the supercomputing crowd looking ahead to exascale hardware, these performance per watt numbers are rather compelling. So much so that Olofsson was invited to present his architecture at symposiums conducted by Los Alamos National Lab and the PRACE organization in Europe. These top tier users expect to build exascale machines that deliver 50 double precision gigaflops/watt in the 2018 timeframe. Since that includes memory and communication hardware, in addition to compute, the processors themselves will have to deliver in excess of 100 gigaflops/watt.

Although mainstream architectures like GPUs and other manycore technologies, like Intel’s MIC processor, may be able to evolve fast enough to serve this purpose, the Epiphany technology could offer a more straight-line path to such performance levels. If Adapteva is able to establish itself in a volume market like smartphones and tablets, the technology could very well end up in our future supercomputers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Prize, of course, comes with an award of $10,000 courtesy of H Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

TACC Simulations Probe the First Days of Stars, Black Holes

August 12, 2022

The stunning images produced by the James Webb Space Telescope and recent supercomputer-enabled black hole imaging efforts have brought the early days of the universe quite literally into sharp focus. Researchers from th Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

AWS Solution Channel

Shutterstock 1519171757

Running large-scale CFD fire simulations on AWS for Amazon.com

This post was contributed by Matt Broadfoot, Senior Fire Strategy Manager at Amazon Design and Construction, and Antonio Cennamo ProServe Customer Practice Manager, Colin Bridger Principal HPC GTM Specialist, Grigorios Pikoulas ProServe Strategic Program Leader, Neil Ashton Principal, Computational Engineering Product Strategy, Roberto Medar, ProServe HPC Consultant, Taiwo Abioye ProServe Security Consultant, Talib Mahouari ProServe Engagement Manager at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1689646429

Gain a Competitive Edge using Cloud-Based, GPU-Accelerated AI KYC Recommender Systems

Financial services organizations face increased competition for customers from technologies such as FinTechs, mobile banking applications, and online payment systems. To meet this challenge, it is important for organizations to have a deep understanding of their customers. Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

Q&A with ORNL’s Bronson Messer, an HPCwire Person to Watch in 2022

August 12, 2022

HPCwire presents our interview with Bronson Messer, distinguished scientist and director of Science at the Oak Ridge Leadership Computing Facility (OLCF), ORNL, and an HPCwire 2022 Person to Watch. Messer recaps ORNL's journey to exascale and sheds light on how all the pieces line up to support the all-important science. Also covered are the role... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

Argonne Deploys Polaris Supercomputer for Science in Advance of Aurora

August 9, 2022

Argonne National Laboratory has made its newest supercomputer, Polaris, available for scientific research. The system, which ranked 14th on the most recent Top500 list, is serving as a testbed for the exascale Aurora system slated for delivery in the coming months. The HPE-built Polaris system (pictured in the header) consists of 560 nodes... Read more…

US CHIPS and Science Act Signed Into Law

August 9, 2022

Just a few days after it was passed in the Senate, the U.S. CHIPS and Science Act has been signed into law by President Biden. In a ceremony today, Biden signed and lauded the ambitious piece of legislation, which over the course of the legislative process broadened to include hundreds of billions in additional science and technology spending. He was flanked by Speaker... Read more…

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains – including and in particular the semiconductor supply chain. In the U.S. – which, like much of the world, relies on Asia for its semiconductors – those efforts have taken shape through the recently... Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York Stock Exchange. It is now trading under two ticker symbols – QBTS and QBTS WS (warrant shares), respectively. Welcome to the public... Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear weapons. Amid major efforts to modernize that stockpile, LLNL has announced that researchers from its own Energetic Materials Center... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking – which serves as the EU’s concerted supercomputing play – announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire