The Weekly Top Five

By Tiffany Trader

May 5, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week we cover ISRO’s newest supercomputer; Tokyo Tech’s selection of EM Photonics’ CULA library; Intel’s 3-D transistor breakthrough; the latest LSF Tools from Platform Computing; and SciNet’s new NextIO GPU-based system.

Indian Supercomputing SAGA

This week the Indian Space Research Organisation (ISRO) launched that nation’s fastest computer — “SAGA-220” — which stands for “Supercomputer for Aerospace with GPU Architecture-220 teraflops.” The new system relies heavily on GPUs to achieve its eponymous theoretical peak speed of 220 teraflops, which will be put to work solving complex aerospace problems.

The Vikram Sarabhai Space Centre along with vendor partner, Wipro, Ltd., designed and built the supercomputer using commodity hardware and open source software components at a cost of about $3.1 million (Rs. 14 crores). SAGA-220 contains 400 NVIDIA Tesla 2070 GPUs and 400 Intel quad-core Xeon CPUs, linked with a high speed interconnect. Each GPU and CPU provides a performance of 500 gigaflops and 50 gigaflops respectively, adding up to the 220 teraflop mark. The GPUs also help the system achieve a stated power consumption of 150 kW, and the ISRO representatives explain that minimizing environmental impact was one of their goals. The architecture design intentially allows for future upgrades, which could eventually lead to petascale performance.

SAGA-220 will reside at Satish Dhawan Supercomputing Facility, which is part of the Vikram Sarabhai Space Centre (VSSC), in Thiruvananthapuram, India.

HPCwire presents feature coverage of the SAGA-220 debut, here.

Tokyo Tech Selects CULA Library for TSUBAME 2.0

EM Photonics announced that the Tokyo Institute of Technology’s supercomputer, TSUBAME 2.0, will be using CULA tools as part of a four-year licensing agreement, providing the system’s users with the most current version of the software. The arrangement was brokered by one of EM Photonics’ major resellers, Best Systems, which works with many Japanese academic and government institutions.

CULA was developed by a team of engineers at EM Photonics in partnership with NVIDIA. It leverages NVIDIA’s CUDA architecture to improve the performance of linear algebra fuctions.

The Tokyo Institute of Technology (Tokyo Tech), the largest science and technology university in Japan, is home to the TSUBAME 2.0 supercomputer, Japan’s first petascale system, which occupies the fourth spot on the TOP500 list of the world’s fastest sypercomputers.

TSUBAME 2.0 relies on GPU computing to achieve its powerful performance level, and as such it required a tool capable of tapping the power of the CUDA architecture. Professor Satoshi Matsuoka, TSUBAME 2.0 project lead, explained:

“The majority of the achievable FLOPS in TSUBAME 2.0 is due to the power of the GPUs, so it is essential that we provide as comprehensive a software stack to utilize them to their fullest potential as possible. CULA will be an extremely valuable part of the portfolio, allowing our scientists to conduct large scale simulations at unprecedented speeds.”

Intel Brings Transistor Into Third-Dimension

The wait for a commercial 3-D transistor is over and Intel was first to cross the finish line when it announced its intention to mass produce transistors with a three-dimensional structure, called Tri-Gate. According to Intel reps, this advancement will extend Moore’s Law for years to come. Intel first revealed its 3-D processor strategy in 2002, and is now finally entering the high-volume manufacturing stage for the 22-nanometer (nm) node in an Intel chip codenamed “Ivy Bridge.”

The company explains that the revolutionary transistor design will allow chips to function better with less power, a good profile for a variety of devices, from the smallest handhelds to massive distributed (cloud) servers.

HPCwire Editor Michael Feldman provides further coverage of this significant development in chip design, and helps explain why a third dimension was necessary.

The problem is that as semiconductor geometries shrink, it gets increasingly difficult to prevent the electrons from leaking out of the gates, especially at higher voltages. The solution was to build up them up into three-dimensional fin structures so they can be wrapped around the channel, making it more difficult for the electrons to escape. Essentially they’ve blocked the electrons on three sides instead of the one in the flat transistor.

The 3-D Tri-Gate transistor will be implemented in the company’s forthcoming manufacturing process, called the 22nm node, a reference to the size of individual transistor features. To illustrate just how small this is, the company explains that “more than 6 million 22nm Tri-Gate transistors could fit in the period at the end of this sentence.”

Platform Revs LSF Tools

On the heels of last week’s Platform Symphony upgrade, Platform Computing is now announcing new versions of two LSF product family tools designed to meet the workload management needs of HPC and IT administrators. According to the release: “Platform RTM 8 is a comprehensive operational dashboard that provides administrators with the information and tools needed to maximize cluster efficiency,” and “Platform Analytics 8 is an advanced analysis and visualization tool that provides the insight needed to quickly identify and troubleshoot bottlenecks and analyze usage trends within the HPC datacenter.”

Platform RTM offers monitoring across all workload aspects, including global clusters, hosts, licenses queues, users and log files. Features highlighted in the latest release include a single-view, intuitive dashboard; multi-cluster support; resource consumption monitoring; resource monitoring by user, group or team; and automated alerts and exception handling aimed at improving cluster availability. Platform Analytics 8 helps create actionable information from raw business data. Key features include an enhanced graphical interface; a configurable dashboard view; multi-level analysis; an open architecture that integrates HPC datacenter and job-related data with external data sources; and the ability to accommodate thousands of users and millions of jobs.

Several Platform customers provided feedback in support of the new releases, including Cadence Design Systems, Red Bull Racing, and Simulia. Here’s what Steve MacQuiddy, IT director engineering infrastructure at Cadence, reported: “The ability to monitor cluster availability and performance is imperative when we’re running millions of design simulations to test our latest software releases. Having the single Platform RTM dashboard allows us to simultaneously observe the entire cluster environment and it has not only made it easier for us to better balance our workloads, but it’s also helped us optimize throughput for our critical jobs during peak usage.”

NextIO GPU Computing Solution Doubles Memory Capability for SciNet System

The SciNet Consortium at the University of Toronto is relying on NextIO’s vCORE Express 2070 GPU systems to boost their computing power, enabling greater potential for scientific breakthroughs. The SciNet researchers required a powerful and flexible GPU system that would allow them to solve difficult computing challenges in the study of astrophysics, aerospace, cosmology simulations and computational combustion. The NextIO solution provides faster GPU memory, doubling the amount of memory available for simulations, helping researchers process the kinematic measurements of cosmic history, or make predictions related to combusting and multiphase flows involved in aerospace propulsion systems.

NextIO’s vCORE Express uses NVIDIA Tesla 20-Series GPUs and was designed specifically for parallel computing applications. Dr. Chris Loken, SciNet’s chief technical officer, explained in the announcement that the vCORE system was an “obvious choice,” as “these systems certainly give us better density and more memory per dollar in addition to a tremendous amount of flexibility that can be leveraged in variables for different high compute problems.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This