Oak Ridge Supercomputers Modeling Nuclear Future

By Nicole Hemsoth

May 9, 2011

During the annual televised “State of the Union” address at the beginning of 2011, Barak Obama sought to renew the national focus on science and technology, in part by using supercomputing capabilities to drive progress.

To highlight the role of HPC in the new generation of scientific endeavors, the President told millions of Americans about how supercomputing capabilities at Oak Ridge National Laboratory (ORNL) will lend the muscle for a Department of Energy initiative “to get a lot more power out of our nuclear facilities” via the Consortium for Advanced Simulation of Light Water Reactors (CASL).

This speech came well before the word “nuclear” was (yet again) thrown into the public perception tarpit by the Fukushima reactor disaster, otherwise it might be reasonable to assume that there would be more attention focused on the safety angle that complements the CASL’s nuclear efficiency and waste reduction goals. Outside of the safety side of the story, another, perhaps more specific element to his national address was missing — that the power of modeling and simulation — not just high performance computing — might lie at the heart of a new era for American innovation.

To arrive at an ambitious five-year plan to enact a number of design and operational improvements at nuclear facilities, CASL researchers are developing models that will simulate potential upgrades at a range of existing nuclear power plants across the United States that will seek to address a number of direct nuclear facility challenges as well as some pressing software challenges that lie at the heart of ultra-complex modeling at extreme scale.

Despite some of the simulation challenges that are ahead for CASL, the payoff for the DOE’s five-year, $122 million grant last May to support this and two other innovation hubs could be significant. According to the team behind the effort, “these upgrades could improve the energy output of America’s existing reactor fleet by as much as seven reactors’ worth at a fraction of the cost of building new reactors, while providing continued improvements in reliability and safety.”

Director of Oak Ridge National Laboratory, Thom Mason, pointed to the power of new and sophisticated modeling capabilities that “will provide improved insight into the operations of reactors, helping the industry reduce capital and operating costs, minimize nuclear waste volume, safely extend the lifetime of the current nuclear fleet and develop new materials for next-generation reactors.”

The CASL has been designed with the goal of creating a user environment to allow for advanced predictive simulation via the creation of a Virtual Reactor (VR). This virtual reactor will examine key possibilities and existing realities at power plants at both the design and operational level. CASL leaders hope to “produce a multiphysics computational environment that can be used for calculations of both normal and off-normal conditions via the development of superior physical and analytics models and multiphysics integrators.”

The CASL team further claims that once the system has matured, the VR will be able to combine “advanced neutronics, T-H, structural and fuel performance modules, linked with existing systems and safety analysis simulation tools, to model nuclear power plant performance in a high performance computational environment that enables engineers to simulate physical reactors.”

Many of the codes will employ a number of pre-validated neutronics and thermal-hydraulics (T-H) codes that have been developed by a number of partners on the project, including a number of universities (University of Michigan, MIT, North Carolina State and other) as well as national laboratories (Sandia, Los Alamos, and Idaho).

During the first year CASL will be able to achieve a number of initial core simulations using coupled tools and models — a goal that they have reached for the most part already. This involves application of 3D transport with T-H feedback and CFD with neutronics to isolate core elements of the core design and configuration. In the second year the team hopes to be able to apply a full-core CFD model to calculate 3D localized flow distributions to indentify transverse flow that could result in problems with the rods.

According to a spokesperson for ORNL, making use of the Jaguar supercomputer, CASL will allow for large-scale integrated modeling that has only been possible in the last few years.” The challenge is not simply how to use these new capabilities, but how to make sure current programming and computational paradigms can maximize its use.

A document that covers the goals of CASL in more depth sheds light on some of the computational aspects of these massive-scale simulations. The authors note that “a cross-cutting issue that will impact the entire range of computational efforts over the lifetime of CASL is the dramatic shift occurring in computer architectures, with rapid increases in the number of cores in CPUs and increasing use of specialized processing units (such as GPUs) as computational accelerators. As a result, applications must be designed for multiple levels of memory hierarchy and massive thread parallelism.”

The authors of the report go on to note that while they can expect peak performance at the desktop to be in the 10 teraflop range and the performance at the leadership platform to be in the several hundred petaflop range, during the next five years, “it will be challenging for applications to achieve a significant fraction of these peak performance numbers, particularly existing applications that have not been designed to perform well on such machines.”

Another one of CASL’s stated goals has to do with the future of modeling and simulation-focused research. The team states that they hope to “promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities.” In other words, by harnessing high performance computing to demonstrate actual circumstances versus reflect the educated hopes of even the most skilled reactor engineers, we might be one step closer to fail-proof design in an area that will allow for nothing less than perfection.

CASL could have a chance to see its models and simulations leap to life over the course of the first five years of the project. Currently the Tennessee Valley Authority operates a total of six reactors that generate close to 7,000 megawatts. The agency is currently embarking on a $2.5 billion journey to create a second pressurized water reactor at one of its existing facilities. This provides a perfect opportunity for the CASL team to put their facility modeling research to work; thus they’ve started creating simulations focused on the reactor core, internals and the reactor vessel.

CASL claims that “much of the virtual reactor to be developed will be applicable to other reactor types, including boiling water reactors.” They hope that during the subsequent set of five-year objectives they will be able to expand to include structures, systems and components that are outside of the vessel as well as consider small modular reactors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This