Oak Ridge Supercomputers Modeling Nuclear Future

By Nicole Hemsoth

May 9, 2011

During the annual televised “State of the Union” address at the beginning of 2011, Barak Obama sought to renew the national focus on science and technology, in part by using supercomputing capabilities to drive progress.

To highlight the role of HPC in the new generation of scientific endeavors, the President told millions of Americans about how supercomputing capabilities at Oak Ridge National Laboratory (ORNL) will lend the muscle for a Department of Energy initiative “to get a lot more power out of our nuclear facilities” via the Consortium for Advanced Simulation of Light Water Reactors (CASL).

This speech came well before the word “nuclear” was (yet again) thrown into the public perception tarpit by the Fukushima reactor disaster, otherwise it might be reasonable to assume that there would be more attention focused on the safety angle that complements the CASL’s nuclear efficiency and waste reduction goals. Outside of the safety side of the story, another, perhaps more specific element to his national address was missing — that the power of modeling and simulation — not just high performance computing — might lie at the heart of a new era for American innovation.

To arrive at an ambitious five-year plan to enact a number of design and operational improvements at nuclear facilities, CASL researchers are developing models that will simulate potential upgrades at a range of existing nuclear power plants across the United States that will seek to address a number of direct nuclear facility challenges as well as some pressing software challenges that lie at the heart of ultra-complex modeling at extreme scale.

Despite some of the simulation challenges that are ahead for CASL, the payoff for the DOE’s five-year, $122 million grant last May to support this and two other innovation hubs could be significant. According to the team behind the effort, “these upgrades could improve the energy output of America’s existing reactor fleet by as much as seven reactors’ worth at a fraction of the cost of building new reactors, while providing continued improvements in reliability and safety.”

Director of Oak Ridge National Laboratory, Thom Mason, pointed to the power of new and sophisticated modeling capabilities that “will provide improved insight into the operations of reactors, helping the industry reduce capital and operating costs, minimize nuclear waste volume, safely extend the lifetime of the current nuclear fleet and develop new materials for next-generation reactors.”

The CASL has been designed with the goal of creating a user environment to allow for advanced predictive simulation via the creation of a Virtual Reactor (VR). This virtual reactor will examine key possibilities and existing realities at power plants at both the design and operational level. CASL leaders hope to “produce a multiphysics computational environment that can be used for calculations of both normal and off-normal conditions via the development of superior physical and analytics models and multiphysics integrators.”

The CASL team further claims that once the system has matured, the VR will be able to combine “advanced neutronics, T-H, structural and fuel performance modules, linked with existing systems and safety analysis simulation tools, to model nuclear power plant performance in a high performance computational environment that enables engineers to simulate physical reactors.”

Many of the codes will employ a number of pre-validated neutronics and thermal-hydraulics (T-H) codes that have been developed by a number of partners on the project, including a number of universities (University of Michigan, MIT, North Carolina State and other) as well as national laboratories (Sandia, Los Alamos, and Idaho).

During the first year CASL will be able to achieve a number of initial core simulations using coupled tools and models — a goal that they have reached for the most part already. This involves application of 3D transport with T-H feedback and CFD with neutronics to isolate core elements of the core design and configuration. In the second year the team hopes to be able to apply a full-core CFD model to calculate 3D localized flow distributions to indentify transverse flow that could result in problems with the rods.

According to a spokesperson for ORNL, making use of the Jaguar supercomputer, CASL will allow for large-scale integrated modeling that has only been possible in the last few years.” The challenge is not simply how to use these new capabilities, but how to make sure current programming and computational paradigms can maximize its use.

A document that covers the goals of CASL in more depth sheds light on some of the computational aspects of these massive-scale simulations. The authors note that “a cross-cutting issue that will impact the entire range of computational efforts over the lifetime of CASL is the dramatic shift occurring in computer architectures, with rapid increases in the number of cores in CPUs and increasing use of specialized processing units (such as GPUs) as computational accelerators. As a result, applications must be designed for multiple levels of memory hierarchy and massive thread parallelism.”

The authors of the report go on to note that while they can expect peak performance at the desktop to be in the 10 teraflop range and the performance at the leadership platform to be in the several hundred petaflop range, during the next five years, “it will be challenging for applications to achieve a significant fraction of these peak performance numbers, particularly existing applications that have not been designed to perform well on such machines.”

Another one of CASL’s stated goals has to do with the future of modeling and simulation-focused research. The team states that they hope to “promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities.” In other words, by harnessing high performance computing to demonstrate actual circumstances versus reflect the educated hopes of even the most skilled reactor engineers, we might be one step closer to fail-proof design in an area that will allow for nothing less than perfection.

CASL could have a chance to see its models and simulations leap to life over the course of the first five years of the project. Currently the Tennessee Valley Authority operates a total of six reactors that generate close to 7,000 megawatts. The agency is currently embarking on a $2.5 billion journey to create a second pressurized water reactor at one of its existing facilities. This provides a perfect opportunity for the CASL team to put their facility modeling research to work; thus they’ve started creating simulations focused on the reactor core, internals and the reactor vessel.

CASL claims that “much of the virtual reactor to be developed will be applicable to other reactor types, including boiling water reactors.” They hope that during the subsequent set of five-year objectives they will be able to expand to include structures, systems and components that are outside of the vessel as well as consider small modular reactors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC impact at SC18. Most noteworthy is that five of 13 CAAR applic Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

CEA’s Pick of ThunderX2-based Atos System Boosts Arm

November 8, 2018

Europe’s bet on Arm took another step forward today with selection of an Atos BullSequana X1310 system by CEA’s (French Alternative Energies and Atomic Ener Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This