Oak Ridge Supercomputers Modeling Nuclear Future

By Nicole Hemsoth

May 9, 2011

During the annual televised “State of the Union” address at the beginning of 2011, Barak Obama sought to renew the national focus on science and technology, in part by using supercomputing capabilities to drive progress.

To highlight the role of HPC in the new generation of scientific endeavors, the President told millions of Americans about how supercomputing capabilities at Oak Ridge National Laboratory (ORNL) will lend the muscle for a Department of Energy initiative “to get a lot more power out of our nuclear facilities” via the Consortium for Advanced Simulation of Light Water Reactors (CASL).

This speech came well before the word “nuclear” was (yet again) thrown into the public perception tarpit by the Fukushima reactor disaster, otherwise it might be reasonable to assume that there would be more attention focused on the safety angle that complements the CASL’s nuclear efficiency and waste reduction goals. Outside of the safety side of the story, another, perhaps more specific element to his national address was missing — that the power of modeling and simulation — not just high performance computing — might lie at the heart of a new era for American innovation.

To arrive at an ambitious five-year plan to enact a number of design and operational improvements at nuclear facilities, CASL researchers are developing models that will simulate potential upgrades at a range of existing nuclear power plants across the United States that will seek to address a number of direct nuclear facility challenges as well as some pressing software challenges that lie at the heart of ultra-complex modeling at extreme scale.

Despite some of the simulation challenges that are ahead for CASL, the payoff for the DOE’s five-year, $122 million grant last May to support this and two other innovation hubs could be significant. According to the team behind the effort, “these upgrades could improve the energy output of America’s existing reactor fleet by as much as seven reactors’ worth at a fraction of the cost of building new reactors, while providing continued improvements in reliability and safety.”

Director of Oak Ridge National Laboratory, Thom Mason, pointed to the power of new and sophisticated modeling capabilities that “will provide improved insight into the operations of reactors, helping the industry reduce capital and operating costs, minimize nuclear waste volume, safely extend the lifetime of the current nuclear fleet and develop new materials for next-generation reactors.”

The CASL has been designed with the goal of creating a user environment to allow for advanced predictive simulation via the creation of a Virtual Reactor (VR). This virtual reactor will examine key possibilities and existing realities at power plants at both the design and operational level. CASL leaders hope to “produce a multiphysics computational environment that can be used for calculations of both normal and off-normal conditions via the development of superior physical and analytics models and multiphysics integrators.”

The CASL team further claims that once the system has matured, the VR will be able to combine “advanced neutronics, T-H, structural and fuel performance modules, linked with existing systems and safety analysis simulation tools, to model nuclear power plant performance in a high performance computational environment that enables engineers to simulate physical reactors.”

Many of the codes will employ a number of pre-validated neutronics and thermal-hydraulics (T-H) codes that have been developed by a number of partners on the project, including a number of universities (University of Michigan, MIT, North Carolina State and other) as well as national laboratories (Sandia, Los Alamos, and Idaho).

During the first year CASL will be able to achieve a number of initial core simulations using coupled tools and models — a goal that they have reached for the most part already. This involves application of 3D transport with T-H feedback and CFD with neutronics to isolate core elements of the core design and configuration. In the second year the team hopes to be able to apply a full-core CFD model to calculate 3D localized flow distributions to indentify transverse flow that could result in problems with the rods.

According to a spokesperson for ORNL, making use of the Jaguar supercomputer, CASL will allow for large-scale integrated modeling that has only been possible in the last few years.” The challenge is not simply how to use these new capabilities, but how to make sure current programming and computational paradigms can maximize its use.

A document that covers the goals of CASL in more depth sheds light on some of the computational aspects of these massive-scale simulations. The authors note that “a cross-cutting issue that will impact the entire range of computational efforts over the lifetime of CASL is the dramatic shift occurring in computer architectures, with rapid increases in the number of cores in CPUs and increasing use of specialized processing units (such as GPUs) as computational accelerators. As a result, applications must be designed for multiple levels of memory hierarchy and massive thread parallelism.”

The authors of the report go on to note that while they can expect peak performance at the desktop to be in the 10 teraflop range and the performance at the leadership platform to be in the several hundred petaflop range, during the next five years, “it will be challenging for applications to achieve a significant fraction of these peak performance numbers, particularly existing applications that have not been designed to perform well on such machines.”

Another one of CASL’s stated goals has to do with the future of modeling and simulation-focused research. The team states that they hope to “promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities.” In other words, by harnessing high performance computing to demonstrate actual circumstances versus reflect the educated hopes of even the most skilled reactor engineers, we might be one step closer to fail-proof design in an area that will allow for nothing less than perfection.

CASL could have a chance to see its models and simulations leap to life over the course of the first five years of the project. Currently the Tennessee Valley Authority operates a total of six reactors that generate close to 7,000 megawatts. The agency is currently embarking on a $2.5 billion journey to create a second pressurized water reactor at one of its existing facilities. This provides a perfect opportunity for the CASL team to put their facility modeling research to work; thus they’ve started creating simulations focused on the reactor core, internals and the reactor vessel.

CASL claims that “much of the virtual reactor to be developed will be applicable to other reactor types, including boiling water reactors.” They hope that during the subsequent set of five-year objectives they will be able to expand to include structures, systems and components that are outside of the vessel as well as consider small modular reactors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This