Oak Ridge Supercomputers Modeling Nuclear Future

By Nicole Hemsoth

May 9, 2011

During the annual televised “State of the Union” address at the beginning of 2011, Barak Obama sought to renew the national focus on science and technology, in part by using supercomputing capabilities to drive progress.

To highlight the role of HPC in the new generation of scientific endeavors, the President told millions of Americans about how supercomputing capabilities at Oak Ridge National Laboratory (ORNL) will lend the muscle for a Department of Energy initiative “to get a lot more power out of our nuclear facilities” via the Consortium for Advanced Simulation of Light Water Reactors (CASL).

This speech came well before the word “nuclear” was (yet again) thrown into the public perception tarpit by the Fukushima reactor disaster, otherwise it might be reasonable to assume that there would be more attention focused on the safety angle that complements the CASL’s nuclear efficiency and waste reduction goals. Outside of the safety side of the story, another, perhaps more specific element to his national address was missing — that the power of modeling and simulation — not just high performance computing — might lie at the heart of a new era for American innovation.

To arrive at an ambitious five-year plan to enact a number of design and operational improvements at nuclear facilities, CASL researchers are developing models that will simulate potential upgrades at a range of existing nuclear power plants across the United States that will seek to address a number of direct nuclear facility challenges as well as some pressing software challenges that lie at the heart of ultra-complex modeling at extreme scale.

Despite some of the simulation challenges that are ahead for CASL, the payoff for the DOE’s five-year, $122 million grant last May to support this and two other innovation hubs could be significant. According to the team behind the effort, “these upgrades could improve the energy output of America’s existing reactor fleet by as much as seven reactors’ worth at a fraction of the cost of building new reactors, while providing continued improvements in reliability and safety.”

Director of Oak Ridge National Laboratory, Thom Mason, pointed to the power of new and sophisticated modeling capabilities that “will provide improved insight into the operations of reactors, helping the industry reduce capital and operating costs, minimize nuclear waste volume, safely extend the lifetime of the current nuclear fleet and develop new materials for next-generation reactors.”

The CASL has been designed with the goal of creating a user environment to allow for advanced predictive simulation via the creation of a Virtual Reactor (VR). This virtual reactor will examine key possibilities and existing realities at power plants at both the design and operational level. CASL leaders hope to “produce a multiphysics computational environment that can be used for calculations of both normal and off-normal conditions via the development of superior physical and analytics models and multiphysics integrators.”

The CASL team further claims that once the system has matured, the VR will be able to combine “advanced neutronics, T-H, structural and fuel performance modules, linked with existing systems and safety analysis simulation tools, to model nuclear power plant performance in a high performance computational environment that enables engineers to simulate physical reactors.”

Many of the codes will employ a number of pre-validated neutronics and thermal-hydraulics (T-H) codes that have been developed by a number of partners on the project, including a number of universities (University of Michigan, MIT, North Carolina State and other) as well as national laboratories (Sandia, Los Alamos, and Idaho).

During the first year CASL will be able to achieve a number of initial core simulations using coupled tools and models — a goal that they have reached for the most part already. This involves application of 3D transport with T-H feedback and CFD with neutronics to isolate core elements of the core design and configuration. In the second year the team hopes to be able to apply a full-core CFD model to calculate 3D localized flow distributions to indentify transverse flow that could result in problems with the rods.

According to a spokesperson for ORNL, making use of the Jaguar supercomputer, CASL will allow for large-scale integrated modeling that has only been possible in the last few years.” The challenge is not simply how to use these new capabilities, but how to make sure current programming and computational paradigms can maximize its use.

A document that covers the goals of CASL in more depth sheds light on some of the computational aspects of these massive-scale simulations. The authors note that “a cross-cutting issue that will impact the entire range of computational efforts over the lifetime of CASL is the dramatic shift occurring in computer architectures, with rapid increases in the number of cores in CPUs and increasing use of specialized processing units (such as GPUs) as computational accelerators. As a result, applications must be designed for multiple levels of memory hierarchy and massive thread parallelism.”

The authors of the report go on to note that while they can expect peak performance at the desktop to be in the 10 teraflop range and the performance at the leadership platform to be in the several hundred petaflop range, during the next five years, “it will be challenging for applications to achieve a significant fraction of these peak performance numbers, particularly existing applications that have not been designed to perform well on such machines.”

Another one of CASL’s stated goals has to do with the future of modeling and simulation-focused research. The team states that they hope to “promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities.” In other words, by harnessing high performance computing to demonstrate actual circumstances versus reflect the educated hopes of even the most skilled reactor engineers, we might be one step closer to fail-proof design in an area that will allow for nothing less than perfection.

CASL could have a chance to see its models and simulations leap to life over the course of the first five years of the project. Currently the Tennessee Valley Authority operates a total of six reactors that generate close to 7,000 megawatts. The agency is currently embarking on a $2.5 billion journey to create a second pressurized water reactor at one of its existing facilities. This provides a perfect opportunity for the CASL team to put their facility modeling research to work; thus they’ve started creating simulations focused on the reactor core, internals and the reactor vessel.

CASL claims that “much of the virtual reactor to be developed will be applicable to other reactor types, including boiling water reactors.” They hope that during the subsequent set of five-year objectives they will be able to expand to include structures, systems and components that are outside of the vessel as well as consider small modular reactors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after several years of expectations, be the year OpenPOWER and IBM’ Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

HPE Extreme Performance Solutions

Harness the Full Power of HPC Servers with an Effective Cooling Approach

High performance computing (HPC) innovation is rapidly transforming the way we operate – with an onslaught of cutting-edge technologies designed to optimize applications and workloads, increase productivity, and enable better business outcomes. Read more…

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

IBM Touts OpenPOWER Ecosystem, Announces New Customers, Products for AI and Hyperscale

March 20, 2018

At SC17 in Denver four months ago, Ken King, GM, OpenPOWER, IBM Systems Group, told a somewhat jaundiced trio of journalists that 2018 would, finally, after sev Read more…

By Doug Black

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This