A Global Mood Ring for Financial Markets

By Nicole Hemsoth

May 11, 2011

What if you could instantly scan all individual posts on Twitter for one day, cull those snippets together into a cogent whole, and use that information to paint a picture of the global mood?

If that idea alone isn’t enough, imagine making the snap decision to rush out and buy stocks because within three to four days stocks will rise due to the positive “vibe” in the air as foretold by the collective Twitter chatter. Conversely, if the world is having what amounts to a bad hair day, you accordingly sell your stock holdings, knowing that within three to four days, that dour zeitgeist will portend a drop in the Dow.

Does this sound to you like yet another flimsy system to sell traders on the idea that this might be the next big secret? Does it, like all other stock-related get-rich-quick schemes (and let’s face it, just because it comes out of academia doesn’t mask an unmistakble sense of self-interest) seem too good to be true?

For years scientists and speculators have tried to pin down the mysterious changing tides of the stock market. Proof? Search for “stock predictions” to find millions of options from informed analysis and offers of psychic or spiritual guidance. So far nothing has hit home for long enough to be a tried and true standard for evaluating buy or trade decisions.

That “too good to be true” paradigm for market predictions might be upended, however, thanks to our endless tweets and social media updates that indicate our mood, both through words and emoticons–not to mention an expensive array of compute-end tools to tackle massive unstructured data sets in a flash.

The provocative predictive analytics study in question proved a direct correlation between overall stock market performance and the general mood of many thousands of people as gauged from their brief posts on Twitter.  While the model for buying and selling described above only works around 86% of the time, this news caught the attention of traders and computer scientists with equal force.

As a recent article noted, “Online surveillance of social networking sites is emerging as a must-have tool for hedge funds, big banks, high-frequency traders and black box investment firms that run money via computer programs.” The author goes on to note that your feelings and general mood, captured and combined with the rest of the Tweeting, Facebooking world, could become the core of decision-making processes at major financial institutions.

Dr. Johan Bollen teaches informatics at Indiana University and is the lead behind the Twitter mood informatics project. He noted in a recent interview that this marks the beginning of a new era of mood collection to measure stock performance, noting that it is indeed like science fiction that we can now have “a large-scale emotional thermometer for society as a whole.”

In an interview this week Bollen told us that while he can’t share specific details about storage, application layers and the like since his team is in the process of further developing and licensing the research, the processing of tweets is happening in “real time” although it all depends on how one defines “real time.”

In Bollen’s words:

There is clearly a lower bound of the temporal granularity at which you can compute these signals. This limit is largely shaped by processing speeds and the amount of data to process. The amount of Twitter and social media data keeps growing very fast, however at some point you could expect all 7 billion people on earth to have a Twitter or Facebook account and since no one can tweet faster than their thumbs will move across a smart phone screen.

We may find some upper limit on the amount of social media data that can feasible be generated by humanity. From that you can work back to determine the temporal granularity at which you can operate the existing computational limits at a particular point in time.”

In Bollen’s experiences with the computational angle to arrival at global sentiment, he says that he remains optimistic that his team will be able to generate these signals at very small temporal granularity. He noted that as of now, they are “easily processing daily feeds meaning we have a daily signal which is suitable given that our research has shown that this signal is predictive of real-world changes 3 to 4 days in advance. From a preliminary analysis it seems we can take this down to hourly or even half-hourly signals without too much trouble.”

Bollen claims that while all of his work is quite CPU-intensive, much of it can be parallelized because they are analyze each tweet in isolation. With this in mind, however, he claims that they do run into some pretty hard computational limits with their social network analysis as some of the existing algorithms simply cannot run over social networks of such size.

As another element in the computational depth involved in such an undertaking, Bollen told us:

In terms of data intensiveness you do need large-scale data to counter-act noise and other distortions, but there is definitely a law of diminishing returns. Many of these data sets follow very skewed distributions. In general terms you will have very few people making very large and significant contributions, and very many making small and insignificant contributions. By capturing the right subset you can therefore arrive at a much smaller data set that still provides 90% of your signal, and thereby greatly boost your ability to perform your analysis at very short time intervals.

Outside of CPU and signals, there are other challenges that might stand in the way as this idea potentially takes off for financial companies.

This data, which comes in from across an array of global social networks creates a massive pool of unstructured data, could prove a stumbling block for the widespread viability of this kind of real-time data analysis.

Xenomorph is a data analytics and management firm with roots in financial services. According to its CEO, Brian Sentence, “Real time social media feeds give some insight into the human behavior that really drives the markets. However, in addition to the challenge of processing such a large amount of data, correct understanding of the data is the biggest challenge. For instance, seeing “Hathaway” mentioned on Twitter might mean some news on ‘Berkshire Hathaway’ or the actress “Anne Hathaway.”

However, this type of analytics goes far beyond general semantics and natural language processing—it looks at more discreet indicators of mood, including emoticons and other less word-bound cues.

Henry Newman, CEO and CTO of Instrumental, Inc., which is a consultancy firm for users and manufacturers of HPC, also weighed in on the data-level challenges of such analytics. He noted, “There are a number of challenges in this areas including the capture and indexing of the data and of course the development of algorithms to correlate the trends to specific market changes.  Additional challenges include the long term storage and the analysis model. I am aware of some sites MapReduce to be able to search this type of data but these are still problems.”

Instrumental Inc.’s Henry Newman also made a good point about the use of predictive analytics for financial markets in his speculation about the real value of this kind of technology. As he said, “I am not a sociologist and have not looked to see if this type of analysis will provide trending information for trading. What I am sure of is that if it does work just like every other method used it will not work all of the time and could cause large market swings just like other methods we have seen over the last few decades.”

The takeaway here if you’re not a stock market player: Be careful what you tweet, the world’s economy might just depend on it…well, at least 86% of the time. Allow me to do my part for the vitality of world economies and end this piece with a 🙂

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This