A Global Mood Ring for Financial Markets

By Nicole Hemsoth

May 11, 2011

What if you could instantly scan all individual posts on Twitter for one day, cull those snippets together into a cogent whole, and use that information to paint a picture of the global mood?

If that idea alone isn’t enough, imagine making the snap decision to rush out and buy stocks because within three to four days stocks will rise due to the positive “vibe” in the air as foretold by the collective Twitter chatter. Conversely, if the world is having what amounts to a bad hair day, you accordingly sell your stock holdings, knowing that within three to four days, that dour zeitgeist will portend a drop in the Dow.

Does this sound to you like yet another flimsy system to sell traders on the idea that this might be the next big secret? Does it, like all other stock-related get-rich-quick schemes (and let’s face it, just because it comes out of academia doesn’t mask an unmistakble sense of self-interest) seem too good to be true?

For years scientists and speculators have tried to pin down the mysterious changing tides of the stock market. Proof? Search for “stock predictions” to find millions of options from informed analysis and offers of psychic or spiritual guidance. So far nothing has hit home for long enough to be a tried and true standard for evaluating buy or trade decisions.

That “too good to be true” paradigm for market predictions might be upended, however, thanks to our endless tweets and social media updates that indicate our mood, both through words and emoticons–not to mention an expensive array of compute-end tools to tackle massive unstructured data sets in a flash.

The provocative predictive analytics study in question proved a direct correlation between overall stock market performance and the general mood of many thousands of people as gauged from their brief posts on Twitter.  While the model for buying and selling described above only works around 86% of the time, this news caught the attention of traders and computer scientists with equal force.

As a recent article noted, “Online surveillance of social networking sites is emerging as a must-have tool for hedge funds, big banks, high-frequency traders and black box investment firms that run money via computer programs.” The author goes on to note that your feelings and general mood, captured and combined with the rest of the Tweeting, Facebooking world, could become the core of decision-making processes at major financial institutions.

Dr. Johan Bollen teaches informatics at Indiana University and is the lead behind the Twitter mood informatics project. He noted in a recent interview that this marks the beginning of a new era of mood collection to measure stock performance, noting that it is indeed like science fiction that we can now have “a large-scale emotional thermometer for society as a whole.”

In an interview this week Bollen told us that while he can’t share specific details about storage, application layers and the like since his team is in the process of further developing and licensing the research, the processing of tweets is happening in “real time” although it all depends on how one defines “real time.”

In Bollen’s words:

There is clearly a lower bound of the temporal granularity at which you can compute these signals. This limit is largely shaped by processing speeds and the amount of data to process. The amount of Twitter and social media data keeps growing very fast, however at some point you could expect all 7 billion people on earth to have a Twitter or Facebook account and since no one can tweet faster than their thumbs will move across a smart phone screen.

We may find some upper limit on the amount of social media data that can feasible be generated by humanity. From that you can work back to determine the temporal granularity at which you can operate the existing computational limits at a particular point in time.”

In Bollen’s experiences with the computational angle to arrival at global sentiment, he says that he remains optimistic that his team will be able to generate these signals at very small temporal granularity. He noted that as of now, they are “easily processing daily feeds meaning we have a daily signal which is suitable given that our research has shown that this signal is predictive of real-world changes 3 to 4 days in advance. From a preliminary analysis it seems we can take this down to hourly or even half-hourly signals without too much trouble.”

Bollen claims that while all of his work is quite CPU-intensive, much of it can be parallelized because they are analyze each tweet in isolation. With this in mind, however, he claims that they do run into some pretty hard computational limits with their social network analysis as some of the existing algorithms simply cannot run over social networks of such size.

As another element in the computational depth involved in such an undertaking, Bollen told us:

In terms of data intensiveness you do need large-scale data to counter-act noise and other distortions, but there is definitely a law of diminishing returns. Many of these data sets follow very skewed distributions. In general terms you will have very few people making very large and significant contributions, and very many making small and insignificant contributions. By capturing the right subset you can therefore arrive at a much smaller data set that still provides 90% of your signal, and thereby greatly boost your ability to perform your analysis at very short time intervals.

Outside of CPU and signals, there are other challenges that might stand in the way as this idea potentially takes off for financial companies.

This data, which comes in from across an array of global social networks creates a massive pool of unstructured data, could prove a stumbling block for the widespread viability of this kind of real-time data analysis.

Xenomorph is a data analytics and management firm with roots in financial services. According to its CEO, Brian Sentence, “Real time social media feeds give some insight into the human behavior that really drives the markets. However, in addition to the challenge of processing such a large amount of data, correct understanding of the data is the biggest challenge. For instance, seeing “Hathaway” mentioned on Twitter might mean some news on ‘Berkshire Hathaway’ or the actress “Anne Hathaway.”

However, this type of analytics goes far beyond general semantics and natural language processing—it looks at more discreet indicators of mood, including emoticons and other less word-bound cues.

Henry Newman, CEO and CTO of Instrumental, Inc., which is a consultancy firm for users and manufacturers of HPC, also weighed in on the data-level challenges of such analytics. He noted, “There are a number of challenges in this areas including the capture and indexing of the data and of course the development of algorithms to correlate the trends to specific market changes.  Additional challenges include the long term storage and the analysis model. I am aware of some sites MapReduce to be able to search this type of data but these are still problems.”

Instrumental Inc.’s Henry Newman also made a good point about the use of predictive analytics for financial markets in his speculation about the real value of this kind of technology. As he said, “I am not a sociologist and have not looked to see if this type of analysis will provide trending information for trading. What I am sure of is that if it does work just like every other method used it will not work all of the time and could cause large market swings just like other methods we have seen over the last few decades.”

The takeaway here if you’re not a stock market player: Be careful what you tweet, the world’s economy might just depend on it…well, at least 86% of the time. Allow me to do my part for the vitality of world economies and end this piece with a 🙂

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

Nanosheet Transistors: The Last Step in Moore’s Law?

August 19, 2019

Forget for a moment the clamor around the decline of Moore’s Law. It's had a brilliant run, something to be marveled at given it’s not a law at all. Squeezing out the last bit of performance that roughly corresponds Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This