A Global Mood Ring for Financial Markets

By Nicole Hemsoth

May 11, 2011

What if you could instantly scan all individual posts on Twitter for one day, cull those snippets together into a cogent whole, and use that information to paint a picture of the global mood?

If that idea alone isn’t enough, imagine making the snap decision to rush out and buy stocks because within three to four days stocks will rise due to the positive “vibe” in the air as foretold by the collective Twitter chatter. Conversely, if the world is having what amounts to a bad hair day, you accordingly sell your stock holdings, knowing that within three to four days, that dour zeitgeist will portend a drop in the Dow.

Does this sound to you like yet another flimsy system to sell traders on the idea that this might be the next big secret? Does it, like all other stock-related get-rich-quick schemes (and let’s face it, just because it comes out of academia doesn’t mask an unmistakble sense of self-interest) seem too good to be true?

For years scientists and speculators have tried to pin down the mysterious changing tides of the stock market. Proof? Search for “stock predictions” to find millions of options from informed analysis and offers of psychic or spiritual guidance. So far nothing has hit home for long enough to be a tried and true standard for evaluating buy or trade decisions.

That “too good to be true” paradigm for market predictions might be upended, however, thanks to our endless tweets and social media updates that indicate our mood, both through words and emoticons–not to mention an expensive array of compute-end tools to tackle massive unstructured data sets in a flash.

The provocative predictive analytics study in question proved a direct correlation between overall stock market performance and the general mood of many thousands of people as gauged from their brief posts on Twitter.  While the model for buying and selling described above only works around 86% of the time, this news caught the attention of traders and computer scientists with equal force.

As a recent article noted, “Online surveillance of social networking sites is emerging as a must-have tool for hedge funds, big banks, high-frequency traders and black box investment firms that run money via computer programs.” The author goes on to note that your feelings and general mood, captured and combined with the rest of the Tweeting, Facebooking world, could become the core of decision-making processes at major financial institutions.

Dr. Johan Bollen teaches informatics at Indiana University and is the lead behind the Twitter mood informatics project. He noted in a recent interview that this marks the beginning of a new era of mood collection to measure stock performance, noting that it is indeed like science fiction that we can now have “a large-scale emotional thermometer for society as a whole.”

In an interview this week Bollen told us that while he can’t share specific details about storage, application layers and the like since his team is in the process of further developing and licensing the research, the processing of tweets is happening in “real time” although it all depends on how one defines “real time.”

In Bollen’s words:

There is clearly a lower bound of the temporal granularity at which you can compute these signals. This limit is largely shaped by processing speeds and the amount of data to process. The amount of Twitter and social media data keeps growing very fast, however at some point you could expect all 7 billion people on earth to have a Twitter or Facebook account and since no one can tweet faster than their thumbs will move across a smart phone screen.

We may find some upper limit on the amount of social media data that can feasible be generated by humanity. From that you can work back to determine the temporal granularity at which you can operate the existing computational limits at a particular point in time.”

In Bollen’s experiences with the computational angle to arrival at global sentiment, he says that he remains optimistic that his team will be able to generate these signals at very small temporal granularity. He noted that as of now, they are “easily processing daily feeds meaning we have a daily signal which is suitable given that our research has shown that this signal is predictive of real-world changes 3 to 4 days in advance. From a preliminary analysis it seems we can take this down to hourly or even half-hourly signals without too much trouble.”

Bollen claims that while all of his work is quite CPU-intensive, much of it can be parallelized because they are analyze each tweet in isolation. With this in mind, however, he claims that they do run into some pretty hard computational limits with their social network analysis as some of the existing algorithms simply cannot run over social networks of such size.

As another element in the computational depth involved in such an undertaking, Bollen told us:

In terms of data intensiveness you do need large-scale data to counter-act noise and other distortions, but there is definitely a law of diminishing returns. Many of these data sets follow very skewed distributions. In general terms you will have very few people making very large and significant contributions, and very many making small and insignificant contributions. By capturing the right subset you can therefore arrive at a much smaller data set that still provides 90% of your signal, and thereby greatly boost your ability to perform your analysis at very short time intervals.

Outside of CPU and signals, there are other challenges that might stand in the way as this idea potentially takes off for financial companies.

This data, which comes in from across an array of global social networks creates a massive pool of unstructured data, could prove a stumbling block for the widespread viability of this kind of real-time data analysis.

Xenomorph is a data analytics and management firm with roots in financial services. According to its CEO, Brian Sentence, “Real time social media feeds give some insight into the human behavior that really drives the markets. However, in addition to the challenge of processing such a large amount of data, correct understanding of the data is the biggest challenge. For instance, seeing “Hathaway” mentioned on Twitter might mean some news on ‘Berkshire Hathaway’ or the actress “Anne Hathaway.”

However, this type of analytics goes far beyond general semantics and natural language processing—it looks at more discreet indicators of mood, including emoticons and other less word-bound cues.

Henry Newman, CEO and CTO of Instrumental, Inc., which is a consultancy firm for users and manufacturers of HPC, also weighed in on the data-level challenges of such analytics. He noted, “There are a number of challenges in this areas including the capture and indexing of the data and of course the development of algorithms to correlate the trends to specific market changes.  Additional challenges include the long term storage and the analysis model. I am aware of some sites MapReduce to be able to search this type of data but these are still problems.”

Instrumental Inc.’s Henry Newman also made a good point about the use of predictive analytics for financial markets in his speculation about the real value of this kind of technology. As he said, “I am not a sociologist and have not looked to see if this type of analysis will provide trending information for trading. What I am sure of is that if it does work just like every other method used it will not work all of the time and could cause large market swings just like other methods we have seen over the last few decades.”

The takeaway here if you’re not a stock market player: Be careful what you tweet, the world’s economy might just depend on it…well, at least 86% of the time. Allow me to do my part for the vitality of world economies and end this piece with a 🙂

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This