A Global Mood Ring for Financial Markets

By Nicole Hemsoth

May 11, 2011

What if you could instantly scan all individual posts on Twitter for one day, cull those snippets together into a cogent whole, and use that information to paint a picture of the global mood?

If that idea alone isn’t enough, imagine making the snap decision to rush out and buy stocks because within three to four days stocks will rise due to the positive “vibe” in the air as foretold by the collective Twitter chatter. Conversely, if the world is having what amounts to a bad hair day, you accordingly sell your stock holdings, knowing that within three to four days, that dour zeitgeist will portend a drop in the Dow.

Does this sound to you like yet another flimsy system to sell traders on the idea that this might be the next big secret? Does it, like all other stock-related get-rich-quick schemes (and let’s face it, just because it comes out of academia doesn’t mask an unmistakble sense of self-interest) seem too good to be true?

For years scientists and speculators have tried to pin down the mysterious changing tides of the stock market. Proof? Search for “stock predictions” to find millions of options from informed analysis and offers of psychic or spiritual guidance. So far nothing has hit home for long enough to be a tried and true standard for evaluating buy or trade decisions.

That “too good to be true” paradigm for market predictions might be upended, however, thanks to our endless tweets and social media updates that indicate our mood, both through words and emoticons–not to mention an expensive array of compute-end tools to tackle massive unstructured data sets in a flash.

The provocative predictive analytics study in question proved a direct correlation between overall stock market performance and the general mood of many thousands of people as gauged from their brief posts on Twitter.  While the model for buying and selling described above only works around 86% of the time, this news caught the attention of traders and computer scientists with equal force.

As a recent article noted, “Online surveillance of social networking sites is emerging as a must-have tool for hedge funds, big banks, high-frequency traders and black box investment firms that run money via computer programs.” The author goes on to note that your feelings and general mood, captured and combined with the rest of the Tweeting, Facebooking world, could become the core of decision-making processes at major financial institutions.

Dr. Johan Bollen teaches informatics at Indiana University and is the lead behind the Twitter mood informatics project. He noted in a recent interview that this marks the beginning of a new era of mood collection to measure stock performance, noting that it is indeed like science fiction that we can now have “a large-scale emotional thermometer for society as a whole.”

In an interview this week Bollen told us that while he can’t share specific details about storage, application layers and the like since his team is in the process of further developing and licensing the research, the processing of tweets is happening in “real time” although it all depends on how one defines “real time.”

In Bollen’s words:

There is clearly a lower bound of the temporal granularity at which you can compute these signals. This limit is largely shaped by processing speeds and the amount of data to process. The amount of Twitter and social media data keeps growing very fast, however at some point you could expect all 7 billion people on earth to have a Twitter or Facebook account and since no one can tweet faster than their thumbs will move across a smart phone screen.

We may find some upper limit on the amount of social media data that can feasible be generated by humanity. From that you can work back to determine the temporal granularity at which you can operate the existing computational limits at a particular point in time.”

In Bollen’s experiences with the computational angle to arrival at global sentiment, he says that he remains optimistic that his team will be able to generate these signals at very small temporal granularity. He noted that as of now, they are “easily processing daily feeds meaning we have a daily signal which is suitable given that our research has shown that this signal is predictive of real-world changes 3 to 4 days in advance. From a preliminary analysis it seems we can take this down to hourly or even half-hourly signals without too much trouble.”

Bollen claims that while all of his work is quite CPU-intensive, much of it can be parallelized because they are analyze each tweet in isolation. With this in mind, however, he claims that they do run into some pretty hard computational limits with their social network analysis as some of the existing algorithms simply cannot run over social networks of such size.

As another element in the computational depth involved in such an undertaking, Bollen told us:

In terms of data intensiveness you do need large-scale data to counter-act noise and other distortions, but there is definitely a law of diminishing returns. Many of these data sets follow very skewed distributions. In general terms you will have very few people making very large and significant contributions, and very many making small and insignificant contributions. By capturing the right subset you can therefore arrive at a much smaller data set that still provides 90% of your signal, and thereby greatly boost your ability to perform your analysis at very short time intervals.

Outside of CPU and signals, there are other challenges that might stand in the way as this idea potentially takes off for financial companies.

This data, which comes in from across an array of global social networks creates a massive pool of unstructured data, could prove a stumbling block for the widespread viability of this kind of real-time data analysis.

Xenomorph is a data analytics and management firm with roots in financial services. According to its CEO, Brian Sentence, “Real time social media feeds give some insight into the human behavior that really drives the markets. However, in addition to the challenge of processing such a large amount of data, correct understanding of the data is the biggest challenge. For instance, seeing “Hathaway” mentioned on Twitter might mean some news on ‘Berkshire Hathaway’ or the actress “Anne Hathaway.”

However, this type of analytics goes far beyond general semantics and natural language processing—it looks at more discreet indicators of mood, including emoticons and other less word-bound cues.

Henry Newman, CEO and CTO of Instrumental, Inc., which is a consultancy firm for users and manufacturers of HPC, also weighed in on the data-level challenges of such analytics. He noted, “There are a number of challenges in this areas including the capture and indexing of the data and of course the development of algorithms to correlate the trends to specific market changes.  Additional challenges include the long term storage and the analysis model. I am aware of some sites MapReduce to be able to search this type of data but these are still problems.”

Instrumental Inc.’s Henry Newman also made a good point about the use of predictive analytics for financial markets in his speculation about the real value of this kind of technology. As he said, “I am not a sociologist and have not looked to see if this type of analysis will provide trending information for trading. What I am sure of is that if it does work just like every other method used it will not work all of the time and could cause large market swings just like other methods we have seen over the last few decades.”

The takeaway here if you’re not a stock market player: Be careful what you tweet, the world’s economy might just depend on it…well, at least 86% of the time. Allow me to do my part for the vitality of world economies and end this piece with a 🙂

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This